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Presentation of the problem

In Geostatistics one examines measurements depending on the
location on the earth and on time. This leads to Random Fields of
stochastic variables Z (ξ, u) indexed by (ξ, u) belonging to S2 × R,
where S2�the 2-dimensional sphere�is a model for the earth and R
is a model for time.
If the variables are real-valued, one considers a basic probability
space (Ω,F ,P), where all the random variables Z (ξ, u) are de�ned
as measurable mappings from Ω to R.
The covariance of two stochastic variables X ,Y is by de�nition

cov(X ,Y ) = E((X − E(X ))(Y − E(Y )).

For n variables X1, . . . ,Xn the covariance matrix

[cov(Xk ,Xl )]nk,l=1

is symmetric and positive semi-de�nite.
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Isotropic and stationary covariance kernels

One is interested in isotropic and stationary random �elds
Z (ξ, u), (ξ, u) ∈ S2 × R, i.e., the situation where there exists a
continuous function f : [−1, 1]× R→ R such that the covariance
kernel is given as

cov(Z (ξ, u),Z (η, v)) = f (ξ · η, v − u), ξ, η ∈ S2, u, v ∈ R.

Here ξ · η = cos(θ(ξ, η)) is the scalar product equal to cosine of the
length of the geodesic arc (=angle) between ξ and η.
We require with other words that the covariance kernel only
depends on the geodesic distance between the points on the sphere
and on the time di�erence.
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First main result

We shall characterize the class P(S2,R) of continuous functions
f : [−1, 1]× R→ R which are positive de�nite in the following
sense:
For any n ∈ N and any (ξ1, u1), . . . , (ξn, un) ∈ S2 × R the matrix

[f (ξk · ξl , ul − uk)]nk,l=1

is symmetric and positive semi-de�nite.

Theorem (B-Porcu 2015)

The functions f ∈ P(S2,R) are precisely the functions

f (x , u) =
∞∑
n=0

ϕn(u)Pn(x),
∞∑
n=0

ϕn(0) <∞,

where (ϕn) is a sequence of real-valued continuous positive de�nite

functions on R and Pn are the Legendre polynomials on [−1, 1]
normalized as Pn(1) = 1. The series is uniformly convergent.
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Generalizations

This Theorem can be generalized in various ways:

The sphere S2 can be replaced by Sd , d = 1, 2, . . ..

The additive group R can be replaced by any locally compact
group G .

The sphere S2 can be replaced by the Hilbert sphere S∞.

We shall characterize the set P(Sd ,G ) of continuous functions
f : [−1, 1]× G → C such that the kernel

f (ξ · η, u−1v)

is positive de�nite on (Sd × G )2.
Here d = 1, 2, . . . ,∞.
If G = {e} is the trivial group we get a classical Theorem of
Schoenberg from 1942 about positive de�nite functions on spheres.
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Gegenbauer polynomials

To formulate these generalizations we need to recall:

The Gegenbauer polynomials C
(λ)
n for λ > 0 are given by the

generating function

(1− 2xr + r2)−λ =
∞∑
n=0

C
(λ)
n (x)rn, |r | < 1, x ∈ C. (1)

For λ > 0, we have the classical orthogonality relation:∫ 1

−1
(1− x2)λ−1/2C

(λ)
n (x)C

(λ)
m (x) dx =

πΓ(n + 2λ)21−2λ

Γ2(λ)(n + λ)n!
δm,n. (2)
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Chebyshev polynomials

For λ = 0 we use the generating function

1− xr

1− 2xr + r2
=
∞∑
n=0

C
(0)
n (x)rn, |r | < 1, x ∈ C. (3)

It is well-known that

C
(0)
n (x) = Tn(x) = cos(n arccos x), n = 0, 1, . . .

are the Chebyshev polynomials of the �rst kind.∫ 1

−1
(1− x2)−1/2Tn(x)Tm(x) dx =

{
π
2 δm,n if n > 0
πδm,n if n = 0,

(4)

Warning: λ→ C
(λ)
n (x) is discontinuous at λ = 0.
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More on Gegenbauer polynomials

Putting x = 1 in the generating functions yields

C
(λ)
n (1) = (2λ)n/n!, λ > 0, Tn(1) = 1.

Recall that for a ∈ C

(a)n = a(a + 1) · · · (a + n − 1), n ≥ 1, (a)0 = 1.

It is of fundamental importance that

|C (λ)
n (x)| ≤ C

(λ)
n (1), x ∈ [−1, 1], λ ≥ 0.

The special value λ = (d − 1)/2 is relevant for the d -dimensional
sphere

Sd = {x ∈ Rd+1 | ||x || = 1}, d ∈ N

because of the relation of C
(d−1)/2
n to spherical harmonics.
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Spherical harmonics

A spherical harmonic of degree n for Sd is the restriction to Sd of a
real-valued harmonic homogeneous polynomial in Rd+1 of degree n.

Hn(d) = {spherical harmonics of degree n} ⊂ C(Sd )

is a �nite dimensional subspace of the continuous functions on Sd .
We have

Nn(d) := dimHn(d) =
(d)n−1
n!

(2n + d − 1), n ≥ 1, N0(d) = 1.

The surface measure of the sphere is denoted ωd , and it is of total
mass

||ωd || =
2π(d+1)/2

Γ((d + 1)/2)
.

The spaces Hn(d) are mutual orthogonal subspaces of the Hilbert
space L2(Sd , ωd ), which they generate.
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Ultraspherical polynomials

This means that any F ∈ L2(Sd , ωd ) has an orthogonal expansion

F =
∞∑
n=0

Sn, Sn ∈ Hn(d), ||F ||22 =
∞∑
n=0

||Sn||22,

where the �rst series converges in L2(Sd , ωd ), and the second series
is Parseval's equation. Here Sn is the orthogonal projection of F
onto Hn(d) given as

Sn(ξ) =
Nn(d)

||ωd ||

∫
Sd
cn(d , ξ · η)F (η) dωd (η),

where
cn(d , x) = C

((d−1)/2)
n (x)/C

((d−1)/2)
n (1).

These polynomials are called ultraspherical polynomials or
d -dimensional Legendre polynomials.
The 2-dimensional Legendre polynomials are the classical Legendre
polynomials previously denoted Pn.
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Orthogonality relation for ultraspherical polynomials

Specializing the orthogonality relation for the Gegenbauer
polynomials to λ = (d − 1)/2:

∫ 1

−1
(1− x2)d/2−1cn(d , x)cm(d , x) dx =

||ωd ||
||ωd−1||Nn(d)

δm,n.

(De�ne ||ω0|| = 2).
Note that

|cn(d , x)| ≤ 1, x ∈ [−1, 1].
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Schoenberg's Theorem from 1942

Let P(Sd ) denote the class of continuous functions f : [−1, 1]→ R
such that for any n ∈ N and for any ξ1, . . . , ξn ∈ Sd the n × n

symmetric matrix
[f (ξk · ξl )]nk,l=1

is positive semi-de�nite.

Theorem (Schoenberg 1942)

A function f : [−1, 1]→ R belongs to the class P(Sd ) if and only if

f (x) =
∞∑
n=0

bn,dcn(d , x), x ∈ [−1, 1],

for a non-negative summable sequence (bn,d )∞n=0 given as

bn,d =
||ωd−1||Nn(d)

||ωd ||

∫ 1

−1
f (x)cn(d , x)(1− x2)d/2−1 dx .
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Positive de�nite functions on groups

Consider an arbitrary locally compact group G , where we use the
multiplicative notation, and in particular the neutral element of G is
denoted e .
In the representation theory of these groups the following functions
play an crucial role.
A continuous function f : G → C is called positive de�nite if for
any n ∈ N and any u1, . . . , un ∈ G the n × n-matrix

[f (u−1k ul )]nk,l=1

is hermitian and positive semi-de�nite.
By P(G ) we denote the set of continuous positive de�nite
functions on G .
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A generalization

We shall characterize the set P(Sd ,G ) of continuous functions
f : [−1, 1]× G → C such that the kernel

f (ξ · η, u−1v), ξ, η ∈ Sd , u, v ∈ G (5)

is positive de�nite in the sense that for any n ∈ N and any
(ξ1, u1), . . . (ξn, un) ∈ Sd × G the n × n-matrix[

f (ξk · ξl ), u−1k ul )
]n
k,l=1

(6)

is hermitian and positive semi-de�nite.
Note that for G = {e} we can identify P(Sd ,G ) with P(Sd ).
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Simple properties

Proposition

(i) For f1, f2 ∈ P(Sd ,G ) and r ≥ 0 we have rf1, f1 + f2, and

f1 · f2 ∈ P(Sd ,G ).

(ii) For a net of functions (fi )i∈I from P(Sd ,G ) converging

pointwise to a continuous function f : [−1, 1]× G → C, we
have f ∈ P(Sd ,G ).

(iii) For f ∈ P(Sd ,G ) we have f (·, e) ∈ P(Sd ) and f (1, ·) ∈ P(G ).

(iv) For f ∈ P(Sd ) and g ∈ P(G ) we have f ⊗ g ∈ P(Sd ,G ),
where f ⊗ g(x , u) := f (x)g(u) for (x , u) ∈ [−1, 1]× G. In

particular we have f ⊗ 1G ∈ P(Sd ,G ) and f 7→ f ⊗ 1G is an

embedding of P(Sd ) into P(Sd ,G ).
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Characterization of the class P(Sd ,G )

Theorem (B-Porcu 2015)

Let d ∈ N and let f : [−1, 1]× G → C be a continuous function.

Then f belongs to P(Sd ,G ) if and only if there exists a sequence

ϕn,d ∈ P(G ) with
∑
ϕn,d (e) <∞ such that

f (x , u) =
∞∑
n=0

ϕn,d (u)cn(d , x),

and the above expansion is uniformly convergent for

(x , u) ∈ [−1, 1]× G. We have

ϕn,d (u) =
Nn(d)||ωd−1||
||ωd ||

∫ 1

−1
f (x , u)cn(d , x)(1− x2)d/2−1 dx .
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Relation between the classes P(Sd ,G ), d = 1, 2, . . .

Note that
P(S1,G ) ⊃ P(S2,G ) ⊃ · · ·

The inclusion P(Sd ,G ) ⊆ P(Sd−1,G ) is easy, since Sd−1 can be
considered as the equator of Sd . That the inclusion is strict is more
subtle.
The intersection

∞⋂
d=1

P(Sd ,G )

can be identi�ed with the set P(S∞,G ) of continuous functions
f : [−1, 1]× G → C such that for all n

[f (ξk · ξl , u−1k vl )]nk,l=1

is hermitean and positive semi-de�nite for (ξk , uk), k = 1, . . . , n
from S∞ × G , where

S∞ = {(xk) |
∞∑
k=1

x2k = 1} ⊂ `2.
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Schoenberg's second Theorem

When G = {e} Schoenberg proved in 1942:

Theorem

A function f : [−1, 1]→ R belongs to P(S∞) = ∩∞d=1P(Sd ) if and

only if

f (x) =
∞∑
n=0

bnx
n

for a non-negative summable sequence bn. The convergence is

uniform on [−1, 1].
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A characterization of P(S∞,G )

Theorem (B-Porcu 2015)

Let G denote a locally compact group and let f : [−1, 1]× G → C
be a continuous function. Then f belongs to P(S∞,G ) if and only

if there exists a sequence ϕn ∈ P(G ) with
∑
ϕn(e) <∞ such that

f (x , u) =
∞∑
n=0

ϕn(u)xn,

and the above expansion is uniformly convergent for

(x , u) ∈ [−1, 1]× G.
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Schoenberg coe�cient functions

For f ∈ P(Sd ,G ) we know that also f ∈ P(Sk ,G ) for
k = 1, 2, . . . , d and therefore we have d expansions

f (x , u) =
∞∑
n=0

ϕn,k(u)cn(k , x), (x , u) ∈ [−1, 1]× G ,

where k = 1, 2, . . . , d .
We call ϕn,k(u) the k-Schoenberg coe�cient functions of
f ∈ P(Sd ,G ).
In the case where G = {e} the k-Schoenberg coe�cient functions
are non-negative constants and they are just called k-Schoenberg
coe�cients.
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More about Schoenberg coe�cient functions

There is a simple relation between these k-Schoenberg coe�cients
/ coe�cient functions:

Suppose f ∈ P(Sd+2,G ) ⊂ P(Sd ,G ). Then for u ∈ G , n ≥ 0

ϕn,d+2(u) =
(n + d − 1)(n + d)

d(2n + d − 1)
ϕn,d (u)−(n + 1)(n + 2)

d(2n + d + 3)
ϕn+2,d (u).

In the case G = {e} these relations were found by Gneiting (2013)
and extended to general G in B-Porcu(2015) (available on the
ArXive).
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A result of J. Ziegel, 2014, and its generalization

Theorem (Johanna Ziegel, 2014)

Let d ∈ N and suppose that f ∈ P(Sd+2). Then f is continuously

di�erentiable in the open interval (−1, 1) and there exist

f1, f2 ∈ P(Sd ) such that

f ′(x) =
f1(x)− f2(x)

1− x2
, −1 < x < 1.

Theorem (B-Porcu 2015)

Let d ∈ N and suppose that f ∈ P(Sd+2,G ). Then f (x , u) is

continuously di�erentiable with respect to x in ]− 1, 1[ and

∂f (x , u)

∂x
=

f1(x , u)− f2(x , u)

1− x2
, (x , u) ∈]− 1, 1[×G

for functions f1, f2 ∈ P(Sd ,G ). In particular
∂f (x ,u)
∂x is continuous

on ]− 1, 1[×G.
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Some remarks

The result of Ziegel is the analogue of an old result of Schoenberg
about radial positive de�nite functions (Ann. Math. 1938):
If f : [0,∞[→ R is a continuous functions such that f (||x ||) is
positive de�nite on Rn, then f has a continuous derivative of order
[(n − 1)/2] on (0,∞).
The above extension of Ziegel's result to general G is needed in our
extension of Schoenberg's result to P(S∞,G ).
If f ∈ P(S∞,G ) we have a sequence of expansions, d = 1, 2, . . .

f (x , u) =
∞∑
n=0

ϕn,d (u)cn(d , x) =
∞∑
n=0

ϕn(u)xn

valid for (x , u) ∈ [−1, 1]× G .
Here ϕn,d (u), ϕn(u) ∈ P(G ). As part of our proof we obtain

lim
d→∞

ϕn,d (u) = ϕn(u)

for each n ∈ N0, u ∈ G .
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Some indications of proof

Lemma

Any f ∈ P(Sd ,G ) satis�es

f (x , u−1) = f (x , u), |f (x , u)| ≤ f (1, e), (x , u) ∈ [−1, 1]× G .

Lemma

Let K ⊂ G be a non-empty compact set, and let δ > 0 and an

open neighbourhood U of e ∈ G be given. Then there exists a

partition of Sd × K in �nitely many non-empty disjoint Borel sets,

say Mj , j = 1, . . . , r , such that each Mj has the property

(ξ, u), (η, v) ∈ Mj =⇒ θ(ξ, η) < δ, u−1v ∈ U.
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The crucial Lemma

Lemma

For a continuous function f : [−1, 1]× G → C the following are

equivalent:

(i) f ∈ P(Sd ,G ).

(ii) f is bounded and for any complex Radon measure µ on

Sd × G of compact support we have∫
Sd×G

∫
Sd×G

f (cos θ(ξ, η), u−1v) dµ(ξ, u) dµ(η, v) ≥ 0.

Having established the Lemma, the next idea is to apply (ii) to the
measure µ = ωd ⊗ σ, where σ is an arbitrary complex Radon
measure of compact support on G .
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Application to some homogeneous spaces

In a recent manuscript Guella, Menegatto and Peron prove
characterization results for isotropic positive de�nite kernels on
Sd × Sd ′

for d , d ′ ∈ N ∪ {∞}. They consider the set P(Sd ,Sd ′
) of

continuous functions f : [−1, 1]2 → R such that the kernel

K ((ξ, ζ), (η, χ) = f (ξ · η, ζ · χ), ξ, η ∈ Sd , ζ, χ ∈ Sd ′
,

is positive de�nite in the sense that for any n ∈ N and any
(ξ1, ζ1), . . . , (ξn, ζn) ∈ Sd × Sd ′

the matrix

[K ((ξk , ζk), (ξl , ζl ))]nk,l=1

is positive semi-de�nite.
They prove the following:
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Theorem of Gyuella, Menegatto, Peron, 2015

Theorem

Let d , d ′ ∈ N and let f : [−1, 1]2 → R be a continuous function.

Then f ∈ P(Sd , Sd ′
) if and only if

f (x , y) =
∞∑

n,m=0

f̂n,mcn(d , x)cm(d ′, y), x , y ∈ [−1, 1],

where f̂n,m ≥ 0 such that
∑

f̂n,m <∞.

The above expansion is uniformly convergent, and we have

f̂n,m =
Nn(d)σd−1

σd

Nm(d ′)σd ′−1
σd ′

×∫ 1

−1

∫ 1

−1
f (x , y)cn(d , x)cm(d ′, y)(1− x2)d/2−1(1− y2)d

′/2−1 dx dy .
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Reduction to our results

The idea of proof is to consider Sd ′
as the homogeneous space

O(d ′ + 1)/O(d ′), where O(d ′ + 1) is the compact group of
orthogonal transformations in Rd ′+1 and O(d ′) is identi�ed with
the subgroup of O(d ′ + 1) which �xes the point
ε1 = (1, 0, . . . , 0) ∈ Sd ′+1.
It is elementary to see that the formula of the Theorem de�nes a
function f ∈ P(Sd ,Sd ′

).
Let us next consider f ∈ P(Sd ,Sd ′

) and de�ne
F : [−1, 1]× O(d ′ + 1)→ R by

F (x ,A) = f (x ,Aε1 · ε1), x ∈ [−1, 1], A ∈ O(d ′ + 1).

Then F ∈ P(Sd ,O(d ′ + 1)) because

F (x ,B−1A) = f (x ,Aε1 · Bε1), A,B ∈ O(d ′ + 1).
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Continuation of the proof 1

By our main Theorem

F (x ,A) =
∞∑
n=0

ϕn,d (A)cn(d , x), x ∈ [−1, 1], A ∈ O(d ′ + 1),

and

ϕn,d (A) =
Nn(d)σd−1

σd

∫ 1

−1
f (x ,Aε1 · ε1)cn(d , x)(1− x2)d/2−1 dx

belongs to P(O(d ′ + 1)).
The function ϕn,d is bi-invariant under O(d ′), i.e.,

ϕn,d (KAL) = ϕn,d (A), A ∈ O(d ′ + 1), K , L ∈ O(d ′).

This is simply because f (x ,KALε1 · ε1) = f (x ,Aε1 · ε1).
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Continuation of the proof 2

The mapping A 7→ Aε1 is a continuous surjection of O(d ′ + 1) onto
Sd ′

, and it induces a homeomorphism of the homogeneous space
O(d ′ + 1)/O(d ′) onto Sd ′

.
It is easy to see that as a bi-invariant function, ϕn,d has the form

ϕn,d (A) = gn,d (Aε1 · ε1)

for a uniquely determined continuous function gn,d : [−1, 1]→ R.
We have in addition gn,d ∈ P(Sd ′

), because for ξ1, . . . , ξn ∈ Sd ′

there exist A1, . . . ,An ∈ O(d ′ + 1) such that
ξj = Ajε1, j = 1, . . . , n, hence

gn,d (ξk · ξl ) = gn,d (A−1l Akε1 · ε1) = ϕn,d (A−1l Ak).

It is now easy to �nish the proof.
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