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Abstract

We give a new explicit, global, strict Lyapunov function construction for the error dynamics for
adaptive tracking control problems, under an appropriate persistency of excitation condition. We then
allow time-varying uncertainty in the unknown parameters. In this case, we construct input-to-state stable
Lyapunov functions under suitable bounds on the uncertainty, provided the regressor also satisfies an
affine growth condition. This lets us quantify the effects of uncertainties on both the tracking and the

parameter estimation. We illustrate our results usiigdRer systems.

I. INTRODUCTION

Consider a nonlinear system
= f(t,z,0,u) (1)

whered is a vector of uncertain constant parameters. atiaptive tracking controproblem for

(1) is: Given a sufficiently smooth reference trajectary(?), find a dynamic feedback
u = u(t,z,0), 0 = 7(t,x,0), (2)

wheref is the estimate of), that ensures that, (t) — 2 (t) — 0 ast — oo while keeping all
closed-loop signals boundekth. general solving the adaptive tracking problem does not guarantee
thatd — 0 (t) — 0 ast — oo; i.e., parameter identification is not assured. In fact, one does not
know in general whetheff even converges to eonstantvector [5].
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Persistency of excitatio(PE) has been linked to the asymptotic stability of adaptive systems
[13]. PE establishes that a necessary (and sometimes sufficient) condition for parameter iden-
tification is that the reference trajectory bafficiently richso that the regressor satisfies a PE
inequality [3] along the reference trajectory. For large classes of systems, PE implies that tracking
error convergence can only happen when the adaptation law identifies the actual parameters [15].
The relation between parameter identification, uniform asymptotic stability, and PE was first shown
for linear systems, and has been established for certain types of nonlinear systems. (Uniformity
with respect to initial times has important implications for robustness. For example, this property
ensures stability in the face of persistent disturbancés [2] and provides rate of convergence
information [12]. In general, PE is neither necessary nor sufficient for uniform asymptotic stability
[13].) One notable example is the nonlinear dynamics of robot manipulators, where PE ensures
asymptotic parameter error convergence under the Slotine-Li adaptive controller [15]. Recently,
PE was shown to be necessary and sufficient for uniform global asymptotic stability (UGAS) of
a class of nonlinear systems that includes the manipulator dynamics1[6], [7].

When an adaptive controller does not yield GAS, this means that the corresponding closed-
loop system does not admitsdrict Lyapunov function (as defined precisely in the next section).
However, even when the controller yields UGAS, the classical Lyapunov approach does not give
an explicit strict Lyapunov function. Explicit strict Lyapunov functions are generally more useful
than nonstrict ones when computing stability gains or quantifying the effects of uncertainty.

The present work provides a global, explicit, strict Lyapunov function for the error dynamics for
adaptive tracking problems under a PE condition. It belongs to a family of results that transform
nonstrict Lyapunov functions into explicit strict Lyapunov functions; sée [9], [10] for constructions
of this type for large classes of time-invariant systems. The papeér [11] contains a very general
result on constructing strict Lyapunov functions for nonlinear time-varying systems for which
so-called auxiliary functions are known; i.e., the strict Lyapunov function construction in [11] is
nonexplicit unless the auxiliary functions are known.

By contrast, the present work provides explicit expressions for auxiliary functions, which make
our Lyapunov function completely explicit. The Lyapunov functions we obtain here are much
simpler than the ones that would be obtained by applying [11]. Finally, the Lyapunov functions
we provide here are lower bounded néaby positive definite quadratic functions, while the
Lyapunov function construction of [11] would not have this property. We also use the idea of

weighting functions, which have been used in other contexts [1], [4], [19]. The global strict
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Lyapunov-based framework can potentially generalize the UGAS proofs for adaptive systems.
This paper takes the first step towards this generalization.

[I. DEFINITIONS, STANDING ASSUMPTIONS AND NOTATION

For a given vectop € R? of unknown constant parameters, we consider dynamical systems
T = w@)f+u (r,ueR"). (3)

Fix a C''(=continuously differentiable) function, : R — R™ which we call areference trajectory
Let | - | denote the essential supremuip,denote thep x p identity matrix, andR"*? denote
the set of alln x p real matrices. For square matricks and N of the same size)/ > N means
M — N is nonnegative definite. We make the following two assumptions throughout:

Assumption 1:There is a known constam® > 0 such thatmax{|z,|«, |%|e} < B.

Assumption 2:The entriesu;; of w = [w;;] : R — R™*? areC". Also, there are known positive
constants: and 7" such thatul, < [, w(z. (1)) Tw(z, (1)) dl for all t € R.

Assumptior] P is the classicBE condition[6]. We use the functions () = max{|w(z)| : |z| <
[} and i (1) = sup{|Lw(o(t))|s : 0 € O, max{|o|x,|d|s} < I}, where]| - | is the Euclidean
norm or induced matrix norm, depending on the context. THen(z, )| < @:(B).

A real valued function — «(r) is positive semi-definitprovided (i)«(s) > 0 for all s and (ii)
a(0) = 0. If, in addition, a(s) = 0 if and only if s = 0, then we say that is positive definitelf
a(s) — +oo as|s| — +oo, then we say that is proper. A function « is callednegative definite
provided —« is positive definite;negative semi-definibess is defined analogously. A function
a(t, z) is uniformly proper and positive definifgrovided z — inf; a(t, z) is proper and positive
definite. We use the standard classes of comparison functignand X L; see [18].

By a nonstrict Lyapunov functiofior a system: = G(z,t) evolving onRR”, we mean aC"
uniformly proper and positive definite functidn(¢, z) that admits a positive semi-definite function
W (z) such thatLV(t,z) < —W(z) along all of its trajectories. If, in additioni}’ is positive
definite, thenV is a strict Lyapunov functiorfor the system. (We always assume thét) is
uniquely defined ort,, oo) for all initial conditions z(¢,) = z,, and that our systems are all
sufficiently smooth.) The system igcally exponentially stabléo 0 provided there exist positive
constants: and ¢ such that|z(t)| < ce=<(t=%)|z(t,)| for all t > ¢, > 0 and all trajectories(t) of
the system with initial values(t,) € cB8,(=closed ball inR" of radiusc centered ab).

Let 6 > 0 be a given constant. Binput-to-state stability (ISS[L7] of a system: = f(¢, 2, )
with respect to a measurable essentially bounded uncert&ain®® — J5,, we mean that there
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are 5 € KL andy € K, such that the ISS estimate(t)| < 3 (|z(t,)|,t — to) + 7(]d]s) holds
for all t > t,, trajectoriesz(t) of 2 = f(¢, z,0), initial timest, > 0, andd’s. We assume that(t)

is uniquely defined orit,, o) for all § and all initial conditionsz(¢,) = z,, and thatf(¢,0,0) =

0. Whené(t) = 0, the ISS condition reduces toniform global asymptotic stability (UGAS)
Following convention, we also use ISS to maaput-to-state stableand we also use UGAS to
meanuniformly globally asymptotically stablé\n ISS Lyapunov functiofor z = f(¢,z,0) is a
C' uniformly proper and positive definite functidri(¢, z) that admits a proper positive definite
function W(z) and a functione € K. such thatiV(t,z) < —W(z) + a(|é(t)|) along all
trajectories ofz = f(t, z,0) for all uncertaintiesi(¢). A function F(¢,d, p) is uniformly bounded
in p provided there is a positive increasing functiersuch that 7 (¢, d, p)| < «(|p|). Here and in
the sequel, all inequalities should be understood to hold globally unless otherwise indicated, and

we omit the arguments of our functions when they are clear.

[Il. M AIN LYAPUNOV FUNCTION CONSTRUCTION
Fix a continuous functior : R® — R™*" that has constantg K > 0 such thatt " K (¢£)¢ >
cl€)? and |K(¢)] < K for all ¢ € R". Let § denote the state of the estimator of the unknown
paramete € R? in @) set(e,0) = (x, — 2,0 — f), and choose the augmented dynamics
i = w(x)l + uy(t,z,0), - v(t,z,0). 4)
For simplicity, we choose the adaptive controller
ug(t,z,0) = i(t) —w(x) + K(e)e, v(t,z,0) = —w(z) (2,(t) — x) (5)
(see p.ID below for more generAl, us, andv). We have the closed loop error dynamics
¢ = —w(x)d — K(e)e, g = w(z) e, (6)

sinced is constant. We will take the nonstrict Lyapunov functibie, §) = L|(e,d)|>. We also

1
2
setV, =V, + V3, where

Valt,e,0) = 0Tw(z,.(t))Te and Vi(t,0) = 107 [ft o w(z () Tw(a, (1)) dl dm} 0. (7)

Recalling the constants from Assumptigrf]1-2, we also use the functions

P5 l Qfo P4 dm+w(B)l, Where P4(l):%[Po—}—PQ(l)—|—P3(l)]2—|—P1(l)—|—
Py(1) =T (V3 + B) &X(B), Po(l) = valmpsup,,, {| 242 :|ql < VI + B} o(B),  ©)

Pi(l) = o(B)@(v2l + B), and P, = max{20,(B),2K&(B)}.

8“’%] (9)
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Note thatP; € C' on [0, 00), and thatjw(z)| < @(le| + B) and |w(z,(t))||w(z)| < Py(Vi(e,))
for all t € R, 2 € R" andf € R? whene = z,(t) — z. Also, the constanB depends only on:,,
andw andw; depend only onv andz,., so the following construction is global one:
Theorem 1:Under the preceding assumptions, we can transform the nonstrict Lyapunov func-
tion V7 into the explicit, global, strict Lyapunov function

Vi(t,e,0) = Vi(t, e, 0) + Ps(Vi(e,0)) )
for (6) which is therefore UGAS; i.e., there exist functions o, € K, and a positive def-
inite function W so that the functionV; : [0,00) x R*> — [0,00) defined by [(B) satisfies
a1(|(e,0)]) < Vi(t,e,0) < as(|(e,0)]) for all (t,e,0) and Vi(t,e,f) < —W(e,d) along all
trajectories of the closed loop system, af(t),0) is a UGAS trajectory for[(4)F(5). Also,
(©) is locally exponentially stable t0.

The proof is constructive, leading to explicit formulas for thés and 17, Notice that theC!

property ofV; is clear from the regularity of the formulas for th's in (8).

IV. PROOF OFTHEOREM 1
Since |Va(t,e,0)| < @(B)|0|le] < @(B)Vy and P4(l) > ¢/2 everywhere, and sincé; is
nondecreasing, our formulg](9) gives
Vs(t,e,0)
Vs(t,e,0)

IV

Vo + 2 0V1 P4(l)dl+@(B)V1 > l|e\2 %1512 = ay(|(e,0)])
&(B)lfllel + £10P%*(B) + 2 [} Py(m)dm + &(B)W;

& (B)ldlle] + F10P@ 2< > 5[;P4<v1>+w<3>] (lef? + 16P)
©(B)(1+&(B)T) + 2Pi(lef* + [01%)] (el + 181%) = ax(l(e,0)])

everywhere (where the lower bound follows becaligeis everywhere nonnegative using the

IA

(10)

IA A

formula for P in (8), and the upper bound used the relations

o (1) Tw(a (1) dldm‘ < Z3%(B), (11)
f0V1 Py(m)dm < Py(V1)V4, and the triangular inequality||0] < 1|e|? + 1(6]|?) so V5 is uniformly
proper and positive definite, sineg, a; € K. Our assumptions o and [6) readily give

Vi = —e'K(e)e < —clef* and

Vo = 6Tw(z,(t) [~w(@)d — K(e)e] + 64O Ty, (1) Te.
Here and in the sequel, dots indicate time derivatives along the trajector|gs of (6). By Assumption
[1, we have the global inequality’ w(z)w(z,(t))Te < Pi(V1)|e|?, because

w(@)] < @(je| + B) < @(v/2Vi + B) (13)

(12)
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everywhere. Also,

max {—QNTw(xr(t))TK(e)e, éTW e} < %Polélleh (14)
and|w(z) — w(z,(t))] < le|y/npmax; ;j{|(dws;/0x)(p)| : [p| < v/2Vi + B} gives the estimate

— 0w (1) Tw(e) — wla ()] < B(Vh)Allel. (15)

(We used A| < \/npmax; ; |a;;| for any A = [a;;] € R"*?, plus the Mean Value Theorem applied

to the entriesu;; of w.) Therefore, [(IR2) gives
Vo < —0Tw(z, () w(x)0 + Poldlle| + Pi(Vh)le]? (16)
< —0Tw(x, (1) Tw(@ (8)0 + [Po + Po(V1)][0]]e] + Pi(VA)lef

(where the last inequality is by writing(z) = w(z,(t)) + [w(z) — w(z,(t))] and using[(1B)). By

(6) and our key assumption of the classical PE condition in Assumption 2, we get

6

Vy = 207 [ I f;w(%(z»w(zr(n)dmm} w(@) e+ 0wz, (1) Tw(w.(t))

—407 [ [ ool (0) Tl (1) dl] 6 (17)

< 247 U;T It w(a, (1) Tw(z, (1) di dm} w(@)Te + 07w, (1) Tw(z (£)0 — L[]
By Assumptior] IL and the relations (11) afd](13) above, the fundtiofitom (8) is such that

t t
%éT U / (s (1) Tw(z (1) di dm} w(@)Te < Py(Vi)ldlel. (18)
t—T Jm
Combining the preceding inequalities and canceling terms, we obtain
Vi = Vot Vs < —0Tw(a(t) wle ()8 + [Po+ P(V1)]|0]]e] + Py (V1)lef
(19)

+P(V1)l0lle] + 0T w(x, () Tw(z,(1))0 — 516
= {[Po+ Po(V1) + Ps(Vi)l[el} 0] + Pr(Va)lel” — 210

Applying the inequalitya|d| < %aQ + %]éﬁ wherea is the term in braces i9) gives
< gilPot (V) + PVPIel o+ 451012 4+ Pr(V)lel? — 10 20)
< Py(Vi)le* — 35101
SinceV,; < —clel? everywhere,O) and our choice #f in @ give
Vs = ‘:/4+ [2P(Vi)) +@(B)] Wi < 1/4 + %P4(V1)~Vl 21)
< Vi—2P(Vi)le]? < —Py(Vi(e,0))lel” — 451017,
where the first inequality holds becausgB)V; < 0. By ),V5 is uniformly proper and positive
definite. SinceP,(I) > ¢/2 for all [, we conclude thals; is a strict Lyapunov function fof {6). The

local exponential stability follows from the positive definite quadratic lower and upper bounds for

Vi
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Vs and Py(Vi(e, 0))|e]? + £|0]* near0; see ). The result readily follows.

V. ROBUSTNESSRESULT

We illustrate the usefulness of Lyapunov functions for quantifying the effects of uncertainty by

showing that wherw has affine growth, th@erturbederror dynamics
¢ = —w(@)[0+6t)] — K(e)e, 6=w(x)Te, (22)

obtained by replacing with 6 + 4(¢) in (3) (i.e., the uncertain plant i = w(z)(0 + d(t)) + us)
and using the controllef {5), is ISS with respect to suitably bounded uncertaiftjesVe always
assume thad(¢) is bounded in the essential supremum norm by a constanb that we specify
shortly, and that Assumptiof$] 1-2 hold for some positive const@nfs and7'. We takeK (¢) =
cI,,, where the constant > 1 will depend on the choice of; see ) for the condition on
for a given bound. Finally, we assume that there are constants> max{1,o(B)} andn > 0

such that the followingffine growth conditiorholds:
8ww
5 &)
Hencew,(B) < wyy/npB. We prove that 2) is ISS when is big enough by explicitly

constructing an ISS Lyapunov function. We use the constants

lw(z)| < wp + n|z| and <wpy Va,i, . (23)

Ay = Lo, [2max{e, (1+ B)yap} + T{1 + (B +2)}]” + o (B +2) + w3, + &, 24

C, = %w% [/np + 77T}2 + 2nwys + 0.5y/c, and Ay = wys + %.
Note thatA; > C}, sincec > 1 andw,, > 1. Also, (23) is not required in Theoref} 1, so the
following construction cannot be used to prove Theofém 1 by seitiag).

Theorem 2:Let the preceding assumptions hold. For each constant), we can compute a
constant > 1 (depending or) so that[(2R) with uncertainties: R — 6, bounded bys admits
the ISS Lyapunov function

Vi(t,e,0) = 0 w(z,.(t) e+ %éT [ftt_T f;w(mr(l))Tw(asr(l))dl dm| 6 (25)
+A5Vi(e,0) + LV (e, 0)
and so is ISS with respect to the uncertaitityR — 61,,.
Proof: We use the notation from Theore@ 1. We may assumeduhat w(B) > 1. Then

Py(l) < 2wy max{c,/npB}, Pi(l) < w3 +nwy (\/ﬂ—i-B), Py(l) < wi;\2np,
Py(l) < TwyPi(l), and Pi(l) = o= [P+ Po(l) + Ps(D] + A1) + § < Ay +Cul,

(26)
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by (23). By enlargingP, as necessary without relabeling, we assume that) = A, + Cil in
the sequel. Thereforéj from Theorenj ]l takes the forrm (25). One easily checks that Thelgrem 1
remains true wherP, is enlarged in this way. Notice that Assumption 1 and (23) giver)| <
wy + B + nle| everywhere. Therefore, using {21) apd](22), we get:
Vi < —[A1+ CaVile, 0)el? = 410 + (wnr + 0B+ nlel) |22 (2, e, )| 15(2)
and %l;(t,e,é)‘ < Jw(z(4)0] + [Az +2%‘/1(eaé)] le] (27)
< wnldl + [As + 22Vi(e, B)| fel.

Assume that

8wnrn’ 8(war+n[1+B])’ Ci(wa+n[1+B

5 < min{ 1 . . ) min{O.9A1,3ﬂT}}. (28)
We consider two cases. Case|d| > 1. In this case, dropping-Ay|e|? — £]0]2 in (27) gives
Vs < = S(el> +101%) — GVale, 0)[el* — Slel* +w(wn +nB)0]|6(t)]
+ wamlell0116(6)] + {lel*H{lwn + n(1+ B)JA|5(6)]} (29)
+ 2% (W +n[B +1])VilePo(2)].
Applying the relations

6]16(8)] < % + 5w (war +1B)|5(1)2 and [6]le] < 1[0 + 3lef? (30)
to the fourth and fifth terms on the right side pf{29), using the relatior: C1a?/12 + 3b%/Cy

with a = |e[> on the terms in braces if (29), and recalling our assumpfion (28) gines

Vs < =S1(e,0)2 + g2rwhr(wn + 0B + Z[(wn +1B)As +nAPls(1) (31)
Case 2 |e| < 1. In this case,[(]7) gives
Vs < —[Ar+ CiVile, D)llel* = 45161 + wnr(wnr +n[B + 1))16]5(1)]
o+ (war + 0B+ 1) Az + S (e + 1012)] 18(1)] (32)

0 T{wnr (w B 2
— Sef? — 6] + FHerlailBEDE 5(4)[2 4+ Aslwy +n(B + D]I6()],

where the last inequality followed from dropping the tesd Vi (e, 6)|e/?, ), and

fllo(t)] <

) ‘9~|2 + 10TwM(wi»L+n[B+1]) |5(t)|2. (33)

IOTWJLI(WZ+77[B+1]
Conditions [(3]L) and (32) and the uniform proper and positive definitene$s @foted in [1D))

imply that V5 is an ISS Lyapunov function f02) whe#|., < . The theorem follows because

(a) the existence of an ISS Lyapunov function implies the ISS property[(cf. [18] or Rémark 1
below) and (b) the right hand side df (28) can be made as large as desired by choosing a big

enough constant depending or. [ ]
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Remark 1:The explicit ISS Lypanov functiorj (25) fof (R2) leads to explicit expressionsifor
and~ in the ISS estimate fof (22), as follows. Defing, as, a3, ay, o € Koo by (10),

aa(r) = min {5, 4} %, a(r) = min{r.ag 0051}, and

5Tw?, (war+n[B+1])? } 2

ay(r) = {%wﬁ/[(wM +nB)? + c% [(war +nB)As + ) + T

+Aslwy+n(B + 1)]r.
Thenay(|(e,0)]) < Vs(t,e,0) < as(|(e,0)]) and Vs < —a(Vs) + au(]d|~) along all trajectories

of (22) whens satisfies|[(28) (by| (10) and (31)-(32)), and then the explicit formulasifand y
in the ISS estimate follow by standard arguments [17]} [18].

VI. APPLICATION: ROSSLERSYSTEM

We illustrate our Lyapunov function constructions using the controllédsker dynamics
x'lzax1+x2+w1, [fg = —$1—$3+w2, .I.‘g = b+x3[x2—c]+w3 (34)

with unknown parameters, b, andc and control vector = (wq, wo, ws3). The Rdssler model (for

the case of no controls) was introduced [in![14] and has been extensively studied in the context
of chaotic attractors [8]. The systefn [34) can be written in the formw(z)6 +u by taking the
change of feedback

0 —1 O 1 0 0 a
u=w—1]1 0 1|z, w@=|0 0 0 , and =10
0 —x3 0 0 1 —x3 c

Let us show that the PE condition from Assumpt[gn 2 is satisfied for an appropriate class of
reference trajectories. Fix any' reference trajectory of the form,(t) = (21,.(t), zo,(t), cos(t))

that satisfies our Assumptigri 1 for some constBnt 1 and that admits a constapt, € (0, 1)

such thatf' , 2 (1)dl > p, for all t € R. Then

[, et (dl 0 0
Sl () Tl (1) dl = 0 2 0|
0 0 =«

so Assumptiorf |2 and our growth assumptipn] (23) hold with= p,, T = 27, n = 2, and
wy = 2(B + 1). Hence, for any constant> 1, the error dynamics for the @3sler systeny (34)
with the adaptive controllef [5) and (e) = cI,, admits a global strict Lyapunov function of the
form (25) and so is UGAS. Also, Theorgm 2 shows thai (25) is an ISS Lyapunov function when
9 is perturbed by time varying additive uncertaitywherec depends on the choice of
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VIlI. EXTENSION: MORE GENERAL FEEDBACKS

Theorem[ L assumes that the systems are adaptively controlled by (5), and that the known
nonstrict Lyapunov functiofV; is 3|(e, 0)|2. Let us show how these assumptions can be relaxed.
We first assume that AssumptioEH]l—Z hold, and that there exit &unction v(t,e,6), a
boundedC" function K (e), a uniformly proper and positive definite' function Vi, a positive
definite functioni;, a continuous positive increasing functiéh, and a constant > 0 such that
(i) |v(t,e,0)] < P,(Vi)|e| everywhere, (ii)Vi(t, e, 0) < —W,(e) along all trajectories of

~

¢ = —w(@)f — K(e)e, 0= —v(t,e,b), (35)

and (iii) W, (e) > c|e|> everywhere, where and§ are as defined in Sectilll. In other words,
we replacer = —w(z) e from Theorenﬂl with a general adaptation law that could include, for
example, projection operators, least-squares estimators, and prediction-error-based estimators [3],
[16]. A slight variant of the proof of Theorefr] 1 constructs a functignso that [(9) is a global
strict Lyapunov function for[(35) when (i)-(iii) are satisfied.

A different generalization is as follows. Let and 6§ be as in Sectio@ll, and lev and z,
satisfy Assumption§|[[}2. Assume that there exist a (possibly unbounded) matrix fufCtidth
C! entries, aC'! uniformly proper and positive definite functidf (¢, z), a positive definite function
W,(z), and a continuous positive functiak so that (G1)V,(t, z) < —W,(z) along all trajectories
of 2 = —K(z+x,(t))z, (G2) all the second partial derivativésV, /0z;0z; are uniformly bounded
in z, and (G3)W,(z) > A(|z|)|z|* everywhere. Taking {4) and

.
. . 1 -~
us = &, (t) —w(z)d + K(e + x.(t))e, v=— {68‘3 (t, e)w(a:)} , Vi(t,e,0) =V (t,e) + §|9|2
guarantees that the time derivative igf along the trajectories of the closed loop error dynamics
T
¢ = —w(@)f— K(e+xz.(t))e, 0 = {88% (t,e)w(x)} (36)
€

satisfiesf/'l(t,e,é) < —W,(e). SettingV, = V5 + %Vg with V5 and V5 from @), we prove:
Theorem 3:Let Assumption$]{{2 and G1-G3 hold. Then we can explicitly construct a function
Ky € Koo NCT s0 thatVi(t,e,0) = ry(Vi(t,e,0)) + Vi(t, e, ) is a global strict Lyapunov function
for the error dynamicq (36) which are therefore UGAS.
Sketch of ProofThe proof is similar to the proof of Theorgm 1 so we only provide a sketch. The
fact thaté = —w(z, )0 — K (e + x,)e — [w(z) — w(z,)]0 easily gives
Vo = —0Tw(z, (1) Tw(z(£)0 + [a(t, e)w(x)] wla(t))Te + T L=,

~ <9~e 3 dt (37)
—0Tw(@,(t) K (e +a,)e — 0T w(w, (1) w(z) — w(@:(1)]0.

DRAFT



11

Applying the Mean Value Theorem t©+— %l;(t,e)w(e + z,.(t)) andw, one can find a positive
increasing functiornk; such that
(G2 (t e)w(e + 2 ()] wlz,(t) Te < malle])e]?,
—0Tw(w, ()" K(e+z,)e < mile])d]le],
and —0"w(z, (1)) T[w(z) — w(z,(1))]0 < |w(z,(t)0|rx1(|e])|0]|e]. We deduce from?) that

(38)

Vo < =0Tw(, (1) w(@ ()0 + mille])]e]* + [01 + ra(le])]|6] ]
HJw (@ (0)0Hma(le))16]lel} (39)
< =307 w(an () Tw(z (D)0 + malleDle* + [0+ mileD]IBlle] + 33 (e])]6]le],
by applying the relatiomb < a® + 3b* to the terms in braces. Again applying the Mean Value
Theorem, we can readily construct an increasing positive funetjosuch that

Vs < 0Tw(en(t) Twl@nt)d — 507 |1 pw(e, () Tw(a(s)ds| 8+ wa(le]) Blle]

< 0Tw(a,(1) T w(w,(8)0 — £1OF + 2ra(le]) 6] e],

(40)

where the second inequality is by our key PE assumption. Hence, by applying the retation
fea? + L6 with a = |0|, we deduce from9) anO) thig = V, + V4 satisfies
Vi < =510 + walel)lel” + {101} {[@n + mille]) + walel) + 3x1(lel)lell6]]]e]}

< 45101 + ralleDlel” + Loy + malel) + ra(lel) + 53 (el)1]el] el

(41)

One can construct an increasing positive continuous funetiosuch that
2

. T 1 .
ks(Vilt,e,0)Wale) > ra(lel)lef* + m [wl + ra(le]) + mallel) + ST (el)l6llel | le*. (42)
(For example, first find an increasing positive continuous functiorso thatx3(Vi(t, e, 8))le|?
majorizes the right hand side df (42), then takgr) = x3(r)/A(a'(r)) wherea € K is
chosen so that;(t,e,0) > a(|(e,)|) everywhere and\ is assumed without loss of generality

to be decreasing.) Consequently,
Vi < =l + ma(Vilt e, 6))Wae).

One checks that — inf, V,(¢, z) is bounded below by a positive definite quadratic function near
OEI Hence, we can choosg € K., NC! so thatx), > 2x3+ 1 and so thal/s is uniformly proper
oy .. . .y ~ 2 . . .
and positive definite and satisfi&s < —£0|? — x5(V1)W,(e) along all trajectories of (36).00
To see why, letA > 0 be a lower bound forA on B,,. Let K > 0 be a bound fois on (1+ B)B,,. ReducingA, we can assume
that all trajectories ot = —K(z + z.(t))z with initial conditionsz(t,) = z, € AB, stay in5,. Along any such trajectory,

(d/dt){Va(t, z) = Alz|*/{4K}} < —AJ[* +Alz|* /2 < 0, henceVa(to, z0) — Alzo|* /{4K} > Va(t, 2(1)) — Alz(t)]*/{4K} —
0 ast — +oo. Thereforeinf; Va (¢, 2) > Alz|?/{4K} on AB,.
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VIII. CONCLUSIONS

We built explicit global strict Lyapunov functions for general classes of adaptively controlled

nonlinear systems. This made it possible to quantify the effects of uncertainty using ISS. It would

be useful to extend our work to systems that are not necessarily affine in the parameter vector, or

where the current state is unknown; i.e. adaptive output feedback stabilization.
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