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Uniform Global Asymptotic Stability of a Class

of Adaptively Controlled Nonlinear Systems

Fréd́eric Mazenc Marcio de Queiroz Michael Malisoff

Abstract

We give a new explicit, global, strict Lyapunov function construction for the error dynamics for

adaptive tracking control problems, under an appropriate persistency of excitation condition. We then

allow time-varying uncertainty in the unknown parameters. In this case, we construct input-to-state stable

Lyapunov functions under suitable bounds on the uncertainty, provided the regressor also satisfies an

affine growth condition. This lets us quantify the effects of uncertainties on both the tracking and the

parameter estimation. We illustrate our results using Rössler systems.

I. I NTRODUCTION

Consider a nonlinear system

ẋ = f(t, x, θ, u) (1)

whereθ is a vector of uncertain constant parameters. Theadaptive tracking controlproblem for

(1) is: Given a sufficiently smooth reference trajectoryxr (t), find a dynamic feedback

u = u(t, x, θ̂),
·

θ̂ = τ(t, x, θ̂), (2)

where θ̂ is the estimate ofθ, that ensures thatxr (t) − x (t) → 0 as t → ∞ while keeping all

closed-loop signals bounded.In general, solving the adaptive tracking problem does not guarantee

that θ − θ̂ (t) → 0 as t → ∞; i.e., parameter identification is not assured. In fact, one does not

know in general whether̂θ even converges to aconstantvector [5].

Mazenc is with Projet MERE INRIA-INRA, UMR Analyse des Systèmes et Bioḿetrie INRA, 2 pl. Viala, 34060 Montpellier,
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Persistency of excitation(PE) has been linked to the asymptotic stability of adaptive systems

[13]. PE establishes that a necessary (and sometimes sufficient) condition for parameter iden-

tification is that the reference trajectory besufficiently richso that the regressor satisfies a PE

inequality [3] along the reference trajectory. For large classes of systems, PE implies that tracking

error convergence can only happen when the adaptation law identifies the actual parameters [15].

The relation between parameter identification, uniform asymptotic stability, and PE was first shown

for linear systems, and has been established for certain types of nonlinear systems. (Uniformity

with respect to initial times has important implications for robustness. For example, this property

ensures stability in the face of persistent disturbances [2] and provides rate of convergence

information [12]. In general, PE is neither necessary nor sufficient for uniform asymptotic stability

[13].) One notable example is the nonlinear dynamics of robot manipulators, where PE ensures

asymptotic parameter error convergence under the Slotine-Li adaptive controller [15]. Recently,

PE was shown to be necessary and sufficient for uniform global asymptotic stability (UGAS) of

a class of nonlinear systems that includes the manipulator dynamics [6], [7].

When an adaptive controller does not yield GAS, this means that the corresponding closed-

loop system does not admit astrict Lyapunov function (as defined precisely in the next section).

However, even when the controller yields UGAS, the classical Lyapunov approach does not give

an explicit strict Lyapunov function. Explicit strict Lyapunov functions are generally more useful

than nonstrict ones when computing stability gains or quantifying the effects of uncertainty.

The present work provides a global, explicit, strict Lyapunov function for the error dynamics for

adaptive tracking problems under a PE condition. It belongs to a family of results that transform

nonstrict Lyapunov functions into explicit strict Lyapunov functions; see [9], [10] for constructions

of this type for large classes of time-invariant systems. The paper [11] contains a very general

result on constructing strict Lyapunov functions for nonlinear time-varying systems for which

so-called auxiliary functions are known; i.e., the strict Lyapunov function construction in [11] is

nonexplicit, unless the auxiliary functions are known.

By contrast, the present work provides explicit expressions for auxiliary functions, which make

our Lyapunov function completely explicit. The Lyapunov functions we obtain here are much

simpler than the ones that would be obtained by applying [11]. Finally, the Lyapunov functions

we provide here are lower bounded near0 by positive definite quadratic functions, while the

Lyapunov function construction of [11] would not have this property. We also use the idea of

weighting functions, which have been used in other contexts [1], [4], [19]. The global strict
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Lyapunov-based framework can potentially generalize the UGAS proofs for adaptive systems.

This paper takes the first step towards this generalization.

II. D EFINITIONS, STANDING ASSUMPTIONS, AND NOTATION

For a given vectorθ ∈ Rp of unknown constant parameters, we consider dynamical systems

ẋ = ω(x)θ + u (x, u ∈ Rn). (3)

Fix aC1(=continuously differentiable) functionxr : R → Rn which we call areference trajectory.

Let | · |∞ denote the essential supremum,Ip denote thep × p identity matrix, andRn×p denote

the set of alln× p real matrices. For square matricesM andN of the same size,M ≥ N means

M −N is nonnegative definite. We make the following two assumptions throughout:

Assumption 1:There is a known constantB > 0 such thatmax{|xr|∞, |ẋr|∞} ≤ B.

Assumption 2:The entriesωij of ω = [ωij] : Rn → Rn×p areC1. Also, there are known positive

constantsµ andT such thatµIp ≤
∫ t

t−T
ω(xr(l))

>ω(xr(l)) dl for all t ∈ R.

Assumption 2 is the classicalPE condition[6]. We use the functions̄ω(l) = max{|ω(z)| : |z| ≤
l} and ω̄1(l) = sup{| d

dt
ω(σ(t))|∞ : σ ∈ C1, max{|σ|∞, |σ̇|∞} ≤ l}, where | · | is the Euclidean

norm or induced matrix norm, depending on the context. Then| d
dt

ω(xr)|∞ ≤ ω̄1(B).

A real valued functionr 7→ α(r) is positive semi-definiteprovided (i)α(s) ≥ 0 for all s and (ii)

α(0) = 0. If, in addition,α(s) = 0 if and only if s = 0, then we say thatα is positive definite. If

α(s) → +∞ as |s| → +∞, then we say thatα is proper. A function α is callednegative definite

provided−α is positive definite;negative semi-definiteness is defined analogously. A function

α(t, z) is uniformly proper and positive definiteprovidedz 7→ inft α(t, z) is proper and positive

definite. We use the standard classes of comparison functionsK∞ andKL; see [18].

By a nonstrict Lyapunov functionfor a systemż = G(z, t) evolving onRn, we mean aC1

uniformly proper and positive definite functionV (t, z) that admits a positive semi-definite function

W (z) such that d
dt

V (t, z) ≤ −W (z) along all of its trajectories. If, in addition,W is positive

definite, thenV is a strict Lyapunov functionfor the system. (We always assume thatz(t) is

uniquely defined on[to,∞) for all initial conditions z(to) = zo, and that our systems are all

sufficiently smooth.) The system islocally exponentially stableto 0 provided there exist positive

constantsc and c̄ such that|z(t)| ≤ c̄e−c(t−to)|z(to)| for all t ≥ to ≥ 0 and all trajectoriesz(t) of

the system with initial valuesz(to) ∈ cBn(=closed ball inRn of radiusc centered at0).

Let δ̄ > 0 be a given constant. Byinput-to-state stability (ISS)[17] of a systemż = f(t, z, δ)

with respect to a measurable essentially bounded uncertaintyδ : R → δ̄Bp, we mean that there
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are β ∈ KL and γ ∈ K∞ such that the ISS estimate|z(t)| ≤ β (|z(to)| , t− t0) + γ(|δ|∞) holds

for all t ≥ to, trajectoriesz(t) of ż = f(t, z, δ), initial times t0 ≥ 0, andδ’s. We assume thatz(t)

is uniquely defined on[to,∞) for all δ and all initial conditionsz(to) = zo, and thatf(t, 0, 0) ≡
0. When δ(t) ≡ 0, the ISS condition reduces touniform global asymptotic stability (UGAS).

Following convention, we also use ISS to meaninput-to-state stable, and we also use UGAS to

meanuniformly globally asymptotically stable. An ISS Lyapunov functionfor ż = f(t, z, δ) is a

C1 uniformly proper and positive definite functionV (t, z) that admits a proper positive definite

function W (z) and a functionα ∈ K∞ such that d
dt

V (t, z) ≤ −W (z) + α(|δ(t)|) along all

trajectories ofż = f(t, z, δ) for all uncertaintiesδ(t). A functionF(t, d, p) is uniformly bounded

in p provided there is a positive increasing functionα such that|F(t, d, p)| ≤ α(|p|). Here and in

the sequel, all inequalities should be understood to hold globally unless otherwise indicated, and

we omit the arguments of our functions when they are clear.

III. M AIN LYAPUNOV FUNCTION CONSTRUCTION

Fix a continuous functionK : Rn → Rn×n that has constantsc, K̄ > 0 such thatξ>K(ξ)ξ ≥
c|ξ|2 and |K(ξ)| ≤ K̄ for all ξ ∈ Rn. Let θ̂ denote the state of the estimator of the unknown

parameterθ ∈ Rp in (3), set(e, θ̃) = (xr − x, θ − θ̂), and choose the augmented dynamics

ẋ = ω(x)θ + us(t, x, θ̂),
˙̂
θ = ν(t, x, θ̂). (4)

For simplicity, we choose the adaptive controller

us(t, x, θ̂) = ẋr(t)− ω(x)θ̂ + K(e)e, ν(t, x, θ̂) = −ω(x)>(xr(t)− x) (5)

(see p.10 below for more generalK, us, andν). We have the closed loop error dynamics

ė = −ω(x)θ̃ −K(e)e, ˙̃θ = ω(x)>e , (6)

sinceθ is constant. We will take the nonstrict Lyapunov functionV1(e, θ̃) = 1
2
|(e, θ̃)|2. We also

setV4 = V2 + V3, where

V2(t, e, θ̃) = θ̃>ω(xr(t))
>e and V3(t, θ̃) = 1

T
θ̃>

[∫ t

t−T

∫ t

m
ω(xr(l))

>ω(xr(l)) dl dm
]
θ̃. (7)

Recalling the constants from Assumptions 1-2, we also use the functions

P5(l) = 2
c

∫ l

0
P4(m) dm + ω̄(B)l, where P4(l) = T

2µ
[P0 + P2(l) + P3(l)]

2 + P1(l) + c
2
,

P3(l) = T ω̄
(√

2l + B
)

ω̄2(B), P2(l) =
√

2lnp supi,j

{∣∣∣∂ωij(q)

∂q

∣∣∣ : |q| ≤ √
2l + B

}
ω̄(B),

P1(l) = ω̄(B)ω̄(
√

2l + B), and P0 = max{2ω̄1(B), 2K̄ω̄(B)}.

(8)
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Note thatP5 ∈ C1 on [0,∞), and that|ω(x)| ≤ ω̄(|e| + B) and |ω(xr(t))||ω(x)| ≤ P1(V1(e, θ̃))

for all t ∈ R, x ∈ Rn and θ̃ ∈ Rp whene = xr(t)− x. Also, the constantB depends only onxr,

and ω̄ and ω̄1 depend only onω andxr, so the following construction is aglobal one:

Theorem 1:Under the preceding assumptions, we can transform the nonstrict Lyapunov func-

tion V1 into the explicit, global, strict Lyapunov function

V5(t, e, θ̃) = V4(t, e, θ̃) + P5(V1(e, θ̃)) (9)

for (6) which is therefore UGAS; i.e., there exist functionsα1, α2 ∈ K∞ and a positive def-

inite function W so that the functionV5 : [0,∞) × R2 → [0,∞) defined by (9) satisfies

α1(|(e, θ̃)|) ≤ V5(t, e, θ̃) ≤ α2(|(e, θ̃)|) for all (t, e, θ̃) and V̇5(t, e, θ̃) ≤ −W (e, θ̃) along all

trajectories of the closed loop system, and(xr(t), θ) is a UGAS trajectory for (4)-(5). Also,

(6) is locally exponentially stable to0.

The proof is constructive, leading to explicit formulas for theαi’s andW . Notice that theC1

property ofV5 is clear from the regularity of the formulas for thePi’s in (8).

IV. PROOF OFTHEOREM 1

Since |V2(t, e, θ̃)| ≤ ω̄(B)|θ̃||e| ≤ ω̄(B)V1 and P4(l) ≥ c/2 everywhere, and sinceP4 is

nondecreasing, our formula (9) gives

V5(t, e, θ̃) ≥ V2 + 2
c

∫ V1

0
P4(l) dl + ω̄(B)V1 ≥ 1

2
|e|2 + 1

2
|θ̃|2 =: α1(|(e, θ̃)|)

V5(t, e, θ̃) ≤ ω̄(B)|θ̃||e|+ T
2
|θ̃|2ω̄2(B) + 2

c

∫ V1

0
P4(m)dm + ω̄(B)V1

≤ ω̄(B)|θ̃||e|+ T
2
|θ̃|2ω̄2(B) + 1

2

[
2
c
P4(V1) + ω̄(B)

]
(|e|2 + |θ̃|2)

≤
[
ω̄(B)(1 + ω̄(B)T ) + 2

c
P4(|e|2 + |θ̃|2)

]
(|e|2 + |θ̃|2) =: α2(|(e, θ̃)|)

(10)

everywhere (where the lower bound follows becauseV3 is everywhere nonnegative using the

formula for P5 in (8), and the upper bound used the relations∣∣∣∫ t

t−T

∫ t

m
ω(xr(l))

>ω(xr(l))dldm
∣∣∣ ≤ T 2

2
ω̄2(B), (11)∫ V1

0
P4(m)dm ≤ P4(V1)V1, and the triangular inequality|e||θ̃| ≤ 1

2
|e|2 + 1

2
|θ̃|2) so V5 is uniformly

proper and positive definite, sinceα1, α2 ∈ K∞. Our assumptions onK and (6) readily give

V̇1 = −e>K(e)e ≤ −c|e|2 and

V̇2 = θ̃>ω(xr(t))
>[−ω(x)θ̃ −K(e)e] + θ̃> d[ω(xr(t))]

dt

>
e + e>ω(x)ω(xr(t))

>e.
(12)

Here and in the sequel, dots indicate time derivatives along the trajectories of (6). By Assumption

1, we have the global inequalitye>ω(x)ω(xr(t))
>e ≤ P1(V1)|e|2, because

|ω(x)| ≤ ω̄(|e|+ B) ≤ ω̄(
√

2V1 + B) (13)
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everywhere. Also,

max

{
−θ̃>ω(xr(t))

>K(e)e, θ̃>
d[ω(xr(t))]

dt

>

e

}
≤ 1

2
P0|θ̃||e|, (14)

and |ω(x)− ω(xr(t))| ≤ |e|√np maxi,j{|(∂ωij/∂x)(p)| : |p| ≤
√

2V1 + B} gives the estimate

− θ̃>ω(xr(t))
>[ω(x)− ω(xr(t))]θ̃ ≤ P2(V1)|θ̃||e|. (15)

(We used|A| ≤ √
np maxi,j |aij| for anyA = [aij] ∈ Rn×p, plus the Mean Value Theorem applied

to the entriesωij of ω.) Therefore, (12) gives

V̇2 ≤ −θ̃>ω(xr(t))
>ω(x)θ̃ + P0|θ̃||e|+ P1(V1)|e|2

≤ −θ̃>ω(xr(t))
>ω(xr(t))θ̃ + [P0 + P2(V1)]|θ̃||e|+ P1(V1)|e|2

(16)

(where the last inequality is by writingω(x) = ω(xr(t)) + [ω(x)− ω(xr(t))] and using (15)). By

(6) and our key assumption of the classical PE condition in Assumption 2, we get

V̇3 = 2
T
θ̃>

[∫ t

t−T

∫ t

m
ω(xr(l))

>ω(xr(l)) dl dm
]
ω(x)>e + θ̃>ω(xr(t))

>ω(xr(t))θ̃

− 1
T
θ̃>

[∫ t

t−T
ω(xr(l))

>ω(xr(l)) dl
]
θ̃

≤ 2
T
θ̃>

[∫ t

t−T

∫ t

m
ω(xr(l))

>ω(xr(l)) dl dm
]
ω(x)>e + θ̃>ω(xr(t))

>ω(xr(t))θ̃ − µ
T
|θ̃|2.

(17)

By Assumption 1 and the relations (11) and (13) above, the functionP3 from (8) is such that

2

T
θ̃>

[∫ t

t−T

∫ t

m

ω(xr(l))
>ω(xr(l)) dl dm

]
ω(x)>e ≤ P3(V1)|θ̃||e|. (18)

Combining the preceding inequalities and canceling terms, we obtain

V̇4 = V̇2 + V̇3 ≤ −θ̃>ω(xr(t))
>ω(xr(t))θ̃ + [P0 + P2(V1)]|θ̃||e|+ P1(V1)|e|2

+P3(V1)|θ̃||e|+ θ̃>ω(xr(t))
>ω(xr(t))θ̃ − µ

T
|θ̃|2

= {[P0 + P2(V1) + P3(V1)]|e|} |θ̃|+ P1(V1)|e|2 − µ
T
|θ̃|2.

(19)

Applying the inequalitya|θ̃| ≤ T
2µ

a2 + µ
2T
|θ̃|2 wherea is the term in braces in (19) gives

V̇4 ≤ T
2µ

[P0 + P2(V1) + P3(V1)]
2|e|2 + µ

2T
|θ̃|2 + P1(V1)|e|2 − µ

T
|θ̃|2

≤ P4(V1)|e|2 − µ
2T
|θ̃|2.

(20)

SinceV̇1 ≤ −c|e|2 everywhere, (20) and our choice ofP4 in (8) give

V̇5 = V̇4 +
[

2
c
P4(V1) + ω̄(B)

]
V̇1 ≤ V̇4 + 2

c
P4(V1)V̇1

≤ V̇4 − 2P4(V1)|e|2 ≤ −P4(V1(e, θ̃))|e|2 − µ
2T
|θ̃|2,

(21)

where the first inequality holds becauseω̄(B)V̇1 ≤ 0. By (10),V5 is uniformly proper and positive

definite. SinceP4(l) ≥ c/2 for all l, we conclude thatV5 is a strict Lyapunov function for (6). The

local exponential stability follows from the positive definite quadratic lower and upper bounds for
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V5 andP4(V1(e, θ̃))|e|2 + µ
2T
|θ̃|2 near0; see (10). The result readily follows.

V. ROBUSTNESSRESULT

We illustrate the usefulness of Lyapunov functions for quantifying the effects of uncertainty by

showing that whenω has affine growth, theperturbederror dynamics

ė = −ω(x)[θ̃ + δ(t)]−K(e)e, ˙̃θ = ω(x)>e, (22)

obtained by replacingθ with θ + δ(t) in (3) (i.e., the uncertain plant iṡx = ω(x)(θ + δ(t)) + us)

and using the controller (5), is ISS with respect to suitably bounded uncertaintiesδ(t). We always

assume thatδ(t) is bounded in the essential supremum norm by a constantδ̄ > 0 that we specify

shortly, and that Assumptions 1-2 hold for some positive constantsB, µ andT . We takeK(e) ≡
cIn, where the constantc ≥ 1 will depend on the choice of̄δ; see (28) for the condition onc

for a given bound̄δ. Finally, we assume that there are constantsωM ≥ max{1, ω̄(B)} andη > 0

such that the followingaffine growth conditionholds:

|ω(x)| ≤ ωM + η|x| and

∣∣∣∣∂ωij

∂x
(x)

∣∣∣∣ ≤ ωM ∀x, i, j. (23)

Hence ω̄1(B) ≤ ωM
√

npB. We prove that (22) is ISS whenc is big enough by explicitly

constructing an ISS Lyapunov function. We use the constants

∆1 = T
µ
ω6

M

[
2 max{c, (1 + B)

√
np}+ T{1 + η(B + 2)}

]2
+ ηωM(B + 2) + ω2

M + c
2
,

C1 = 2T
µ

ω4
M

[√
np + ηT

]2
+ 2ηωM + 0.5

√
c, and ∆2 = ωM + 2∆1

c
.

(24)

Note that∆1 ≥ C1, sincec ≥ 1 and ωM ≥ 1. Also, (23) is not required in Theorem 1, so the

following construction cannot be used to prove Theorem 1 by settingδ ≡ 0.

Theorem 2:Let the preceding assumptions hold. For each constantδ̄ > 0, we can compute a

constantc ≥ 1 (depending on̄δ) so that (22) with uncertaintiesδ : R → δ̄Bp bounded bȳδ admits

the ISS Lyapunov function

V5(t, e, θ̃) = θ̃>ω(xr(t))
>e + 1

T
θ̃>

[∫ t

t−T

∫ t

m
ω(xr(l))

>ω(xr(l)) dl dm
]
θ̃

+∆2V1(e, θ̃) + C1

c
V 2

1 (e, θ̃)
(25)

and so is ISS with respect to the uncertaintyδ : R → δ̄Bp.

Proof: We use the notation from Theorem 1. We may assume thatωM = ω̄(B) ≥ 1. Then

P0(l) ≤ 2ωM max{c,√npB}, P1(l) ≤ ω2
M + ηωM

(√
2l + B

)
, P2(l) ≤ ω2

M

√
2lnp,

P3(l) ≤ TωMP1(l), and P4(l) = T
2µ

[P0 + P2(l) + P3(l)]
2 + P1(l) + c

2
≤ ∆1 + C1l,

(26)
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by (23). By enlargingP4 as necessary without relabeling, we assume thatP4(l) = ∆1 + C1l in

the sequel. Therefore,V5 from Theorem 1 takes the form (25). One easily checks that Theorem 1

remains true whenP4 is enlarged in this way. Notice that Assumption 1 and (23) give|ω(x)| ≤
ωM + ηB + η|e| everywhere. Therefore, using (21) and (22), we get:

V̇5 ≤ −[∆1 + C1V1(e, θ̃)]|e|2 − µ
2T
|θ̃|2 + (ωM + ηB + η|e|)

∣∣∣∂V5

∂e
(t, e, θ̃)

∣∣∣ |δ(t)|
and

∣∣∣∂V5

∂e
(t, e, θ̃)

∣∣∣ ≤ |ω(xr(t))θ̃|+
[
∆2 + 2C1

c
V1(e, θ̃)

]
|e|

≤ ωM |θ̃|+
[
∆2 + 2C1

c
V1(e, θ̃)

]
|e|.

(27)

Assume that

δ̄ ≤ min
{

C1

8ωMη
, c

8(ωM+η[1+B])
, c

C1(ωM+η[1+B])
min

{
0.9∆1,

µ
3T

}}
. (28)

We consider two cases. Case 1: |e| ≥ 1. In this case, dropping−∆1|e|2 − µ
2T
|θ̃|2 in (27) gives

V̇5 ≤ − C1

4
(|e|2 + |θ̃|2)− C1

3
V1(e, θ̃)|e|2 − C1

12
|e|4 + ωM(ωM + ηB)|θ̃||δ(t)|

+ ωMη|e||θ̃||δ(t)|+ {|e|2}{[ωM + η(1 + B)]∆2|δ(t)|}
+ 2C1

c
(ωM + η[B + 1])V1|e|2|δ(t)|.

(29)

Applying the relations

|θ̃||δ(t)| ≤ C1|θ̃|2
10ωM (ωM+ηB)

+ 5
2C1

ωM(ωM + ηB)|δ(t)|2 and |θ̃||e| ≤ 1
2
|θ̃|2 + 1

2
|e|2 (30)

to the fourth and fifth terms on the right side of (29), using the relationab ≤ C1a
2/12 + 3b2/C1

with a = |e|2 on the terms in braces in (29), and recalling our assumption (28) onδ̄ gives

V̇5 ≤ −C1

40
|(e, θ̃)|2 + 5

2C1
ω2

M(ωM + ηB)2|δ(t)|2 + 3
C1

[(ωM + ηB)∆2 + η∆2]
2|δ(t)|2. (31)

Case 2: |e| ≤ 1. In this case, (27) gives

V̇5 ≤ − [∆1 + C1V1(e, θ̃)]|e|2 − µ
2T
|θ̃|2 + ωM(ωM + η[B + 1])|θ̃||δ(t)|

+ (ωM + η[B + 1])
[
∆2 + C1

c
(|e|2 + |θ̃|2)

]
|δ(t)|

≤ − ∆1

10
|e|2 − µ

15T
|θ̃|2 + 5T{ωM (ωM+η[B+1])}2

2µ
|δ(t)|2 + ∆2[ωM + η(B + 1)]|δ(t)|,

(32)

where the last inequality followed from dropping the term−C1V1(e, θ̃)|e|2, (28), and

|θ̃||δ(t)| ≤ µ
10TωM (ωM+η[B+1])

|θ̃|2 + 10TωM (ωM+η[B+1])
4µ

|δ(t)|2. (33)

Conditions (31) and (32) and the uniform proper and positive definiteness ofV5 (noted in (10))

imply thatV5 is an ISS Lyapunov function for (22) when|δ|∞ ≤ δ̄. The theorem follows because

(a) the existence of an ISS Lyapunov function implies the ISS property (cf. [18] or Remark 1

below) and (b) the right hand side of (28) can be made as large as desired by choosing a big

enough constantc depending on̄δ.
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Remark 1:The explicit ISS Lypanov function (25) for (22) leads to explicit expressions forβ

andγ in the ISS estimate for (22), as follows. Defineα1, α2, α3, α4, α ∈ K∞ by (10),

α3(r) = min
{

C1

40
, µ

15T

}
r2, α(r) = min{r, α3 ◦ α−1

2 (r)}, and

α4(r) =
{

5
2C1

ω2
M(ωM + ηB)2 + 3

C1
[(ωM + ηB)∆2 + η∆2]

2 +
5Tω2

M (ωM+η[B+1])2

2µ

}
r2

+∆2[ωM +η(B + 1)]r.

Then α1(|(e, θ̃)|) ≤ V5(t, e, θ̃) ≤ α2(|(e, θ̃)|) and V̇5 ≤ −α(V5) + α4(|δ|∞) along all trajectories

of (22) whenδ̄ satisfies (28) (by (10) and (31)-(32)), and then the explicit formulas forβ andγ

in the ISS estimate follow by standard arguments [17], [18].

VI. A PPLICATION: RÖSSLERSYSTEM

We illustrate our Lyapunov function constructions using the controlled Rössler dynamics

ẋ1 = ax1 + x2 + w1, ẋ2 = −x1 − x3 + w2, ẋ3 = b + x3[x2 − c] + w3 (34)

with unknown parametersa, b, andc and control vectorw = (w1, w2, w3). The R̈ossler model (for

the case of no controls) was introduced in [14] and has been extensively studied in the context

of chaotic attractors [8]. The system (34) can be written in the formẋ = ω(x)θ +u by taking the

change of feedback

u = w −


0 −1 0

1 0 1

0 −x3 0

x, ω(x) =


x1 0 0

0 0 0

0 1 −x3

 , and θ =


a

b

c

 .

Let us show that the PE condition from Assumption 2 is satisfied for an appropriate class of

reference trajectories. Fix anyC1 reference trajectory of the formxr(t) = (x1r(t), x2r(t), cos(t))

that satisfies our Assumption 1 for some constantB > 1 and that admits a constantµo ∈ (0, 1)

such that
∫ t

t−2π
x2

1r(l) dl ≥ µo for all t ∈ R. Then

∫ t

t−2π
ω(xr(l))

>ω(xr(l)) dl =


∫ t

t−2π
x2

1r(l)dl 0 0

0 2π 0

0 0 π

 ,

so Assumption 2 and our growth assumption (23) hold withµ = µo, T = 2π, η = 2, and

ωM = 2(B + 1). Hence, for any constantc ≥ 1, the error dynamics for the R̈ossler system (34)

with the adaptive controller (5) andK(e) ≡ cIn admits a global strict Lyapunov function of the

form (25) and so is UGAS. Also, Theorem 2 shows that (25) is an ISS Lyapunov function when

θ is perturbed by time varying additive uncertaintyδ, wherec depends on the choice ofδ̄.
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VII. E XTENSION: MORE GENERAL FEEDBACKS

Theorem 1 assumes that the systems are adaptively controlled by (5), and that the known

nonstrict Lyapunov functionV1 is 1
2
|(e, θ̃)|2. Let us show how these assumptions can be relaxed.

We first assume that Assumptions 1-2 hold, and that there exist aC1 function ν(t, e, θ̂), a

boundedC1 function K(e), a uniformly proper and positive definiteC1 function V1, a positive

definite functionW1, a continuous positive increasing functionPν , and a constantc > 0 such that

(i) |ν(t, e, θ̂)| ≤ Pν(V1)|e| everywhere, (ii)V̇1(t, e, θ̃) ≤ −W1(e) along all trajectories of

ė = −ω(x)θ̃ −K(e)e, ˙̃θ = −ν(t, e, θ̂), (35)

and (iii) W1(e) ≥ c|e|2 everywhere, wheree and θ̃ are as defined in Section III. In other words,

we replaceν = −ω(x)>e from Theorem 1 with a general adaptation law that could include, for

example, projection operators, least-squares estimators, and prediction-error-based estimators [3],

[16]. A slight variant of the proof of Theorem 1 constructs a functionP5 so that (9) is a global

strict Lyapunov function for (35) when (i)-(iii) are satisfied.

A different generalization is as follows. Lete and θ̃ be as in Section III, and letω and xr

satisfy Assumptions 1-2. Assume that there exist a (possibly unbounded) matrix functionK with

C1 entries, aC1 uniformly proper and positive definite functionVa(t, z), a positive definite function

Wa(z), and a continuous positive function∆ so that (G1)V̇a(t, z) ≤ −Wa(z) along all trajectories

of ż = −K(z+xr(t))z, (G2) all the second partial derivatives∂2Va/∂zi∂zj are uniformly bounded

in z, and (G3)Wa(z) ≥ ∆(|z|)|z|2 everywhere. Taking (4) and

us = ẋr(t)− ω(x)θ̂ + K(e + xr(t))e, ν = −
[
∂Va

∂e
(t, e)ω(x)

]>
, V1(t, e, θ̃) = Va(t, e) +

1

2
|θ̃|2

guarantees that the time derivative ofV1 along the trajectories of the closed loop error dynamics

ė = −ω(x)θ̃ −K(e + xr(t))e,
˙̃θ =

[
∂Va

∂e
(t, e)ω(x)

]>
(36)

satisfiesV̇1(t, e, θ̃) ≤ −Wa(e). SettingV4 = V2 + 1
2
V3 with V2 andV3 from (7), we prove:

Theorem 3:Let Assumptions 1-2 and G1-G3 hold. Then we can explicitly construct a function

κ4 ∈ K∞∩C1 so thatV5(t, e, θ̃) = κ4(V1(t, e, θ̃))+V4(t, e, θ̃) is a global strict Lyapunov function

for the error dynamics (36) which are therefore UGAS.

Sketch of Proof.The proof is similar to the proof of Theorem 1 so we only provide a sketch. The

fact that ė = −ω(xr)θ̃ −K(e + xr)e− [ω(x)− ω(xr)]θ̃ easily gives

V̇2 = −θ̃>ω(xr(t))
>ω(xr(t))θ̃ +

[
∂Va

∂e
(t, e)ω(x)

]
ω(xr(t))

>e + θ̃> dω(xr(t))>

dt
e

−θ̃>ω(xr(t))
>K(e + xr)e− θ̃>ω(xr(t))

>[ω(x)− ω(xr(t))]θ̃.
(37)
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Applying the Mean Value Theorem toe 7→ ∂Va

∂e
(t, e)ω(e + xr(t)) andω, one can find a positive

increasing functionκ1 such that[
∂Va

∂e
(t, e)ω(e + xr(t))

]
ω(xr(t))

>e ≤ κ1(|e|)|e|2,
−θ̃>ω(xr(t))

>K(e + xr)e ≤ κ1(|e|)|θ̃||e|,
(38)

and−θ̃>ω(xr(t))
>[ω(x)− ω(xr(t))]θ̃ ≤ |ω(xr(t))θ̃|κ1(|e|)|θ̃||e|. We deduce from (37) that

V̇2 ≤ −θ̃>ω(xr(t))
>ω(xr(t))θ̃ + κ1(|e|)|e|2 + [ω̄1 + κ1(|e|)]|θ̃||e|

+{|ω(xr(t))θ̃|}{κ1(|e|)|θ̃||e|}

≤ −1
2
θ̃>ω(xr(t))

>ω(xr(t))θ̃ + κ1(|e|)|e|2 + [ω̄1 + κ1(|e|)]|θ̃||e|+ 1
2
κ2

1(|e|)|θ̃|2|e|2,

(39)

by applying the relationab ≤ 1
2
a2 + 1

2
b2 to the terms in braces. Again applying the Mean Value

Theorem, we can readily construct an increasing positive functionκ2 such that

V̇3 ≤ θ̃>ω(xr(t))
>ω(xr(t))θ̃ − 1

T
θ̃>

[∫ t

t−T
ω(xr(s))

>ω(xr(s))ds
]
θ̃ + κ2(|e|)|θ̃||e|

≤ θ̃>ω(xr(t))
>ω(xr(t))θ̃ − µ

T
|θ̃|2 + 2κ2(|e|)|θ̃||e|,

(40)

where the second inequality is by our key PE assumption. Hence, by applying the relationab ≤
µ
4T

a2 + T
µ
b2 with a = |θ̃|, we deduce from (39) and (40) thatV4 = V2 + 1

2
V3 satisfies

V̇4 ≤ − µ
2T
|θ̃|2 + κ1(|e|)|e|2 + {|θ̃|}{[ω̄1 + κ1(|e|) + κ2(|e|) + 1

2
κ2

1(|e|)|e||θ̃|]|e|}
≤ − µ

4T
|θ̃|2 + κ1(|e|)|e|2 + T

µ
[ω̄1 + κ1(|e|) + κ2(|e|) + 1

2
κ2

1(|e|)|θ̃||e|]2|e|2.
(41)

One can construct an increasing positive continuous functionκ3 such that

κ3(V1(t, e, θ̃))Wa(e) ≥ κ1(|e|)|e|2 +
T

µ

[
ω̄1 + κ1(|e|) + κ2(|e|) +

1

2
κ2

1(|e|)|θ̃||e|
]2

|e|2. (42)

(For example, first find an increasing positive continuous functionκo
3 so thatκo

3(V1(t, e, θ̃))|e|2

majorizes the right hand side of (42), then takeκ3(r) = κo
3(r)/∆(α−1(r)) where α ∈ K∞ is

chosen so thatV1(t, e, θ̃) ≥ α(|(e, θ̃)|) everywhere and∆ is assumed without loss of generality

to be decreasing.) Consequently,

V̇4 ≤ − µ

4T
|θ̃|2 + κ3(V1(t, e, θ̃))Wa(e).

One checks thatz 7→ inft Va(t, z) is bounded below by a positive definite quadratic function near

0.1 Hence, we can chooseκ4 ∈ K∞ ∩C1 so thatκ′4 ≥ 2κ3 + 1 and so thatV5 is uniformly proper

and positive definite and satisfiesV̇5 ≤ − µ
4T
|θ̃|2 − κ3(V1)Wa(e) along all trajectories of (36).�

1To see why, let∆ > 0 be a lower bound for∆ onBn. Let K̄ > 0 be a bound forK on (1+B)Bn. Reducing∆, we can assume
that all trajectories oḟz = −K(z + xr(t))z with initial conditionsz(to) = zo ∈ ∆Bn stay inBn. Along any such trajectory,
(d/dt){Va(t, z)−∆|z|2/{4K̄}} ≤ −∆|z|2+∆|z|2/2 ≤ 0, henceVa(to, zo)−∆|zo|2/{4K̄} ≥ Va(t, z(t))−∆|z(t)|2/{4K̄} →
0 as t → +∞. Therefore,inft Va(t, z) ≥ ∆|z|2/{4K̄} on ∆Bn.
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VIII. C ONCLUSIONS

We built explicit global strict Lyapunov functions for general classes of adaptively controlled

nonlinear systems. This made it possible to quantify the effects of uncertainty using ISS. It would

be useful to extend our work to systems that are not necessarily affine in the parameter vector, or

where the current state is unknown; i.e. adaptive output feedback stabilization.
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[8] A. Lorı́a and A. Zavala-Ŕıo, “Adaptive tracking control of chaotic systems with applications to synchronisation,”IEEE Trans.

Circuits and Systems, vol. 54, issue 9, pp. 2019-2029, 2007.

[9] F. Mazenc and M. Malisoff, “Further constructions of control-Lyapunov functions and stabilizing feedbacks for systems

satisfying the Jurdjevic-Quinn conditions,”IEEE Trans. Automat. Control, vol. 51, no. 2, pp. 360-365, 2006.

[10] F. Mazenc and D. Nesic, “Strong Lyapunov functions for systems satisfying the conditions of La Salle,”IEEE Trans. Automat.

Control, vol. 49, no. 6, pp. 1026-1030, 2004.

[11] F. Mazenc and D. Nesic, “Lyapunov functions for time varying systems satisfying generalized conditions of Matrosov

theorem,”Mathematics of Control, Signals, and Systems, vol. 19, no. 2, pp. 151-182, 2007.

[12] A.P. Morgan and K.S. Narendra, “On the uniform asymptotic stability of certain linear nonautonomous differential equations,”

SIAM J. Control Optim., vol. 15, no. 1, pp. 5-25, 1977.

[13] K.S. Narendra and A.M. Annaswamy, “Persistent excitation in adaptive systems,”International J. Control, vol. 45, no. 1,

pp. 127-160, 1987.

[14] O.E. R̈ossler, “An equation for continuous chaos,”Physics Letters A, vol. 57, pp. 397–398, 1976.

[15] J.-J. Slotine and W. Li, “Theoretical issues in adaptive manipulator control,” inProceedings of the 5th Yale Workshop on

Applied Adaptive Systems Theory, pp. 252-258, 1987.

[16] J.-J. Slotine and W. Li,Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice Hall, 1991.

[17] E.D. Sontag, “Smooth stabilization implies coprime factorization,”IEEE Trans. Automat. Control, vol. 34, no. 4, pp. 435–443,

1989.

[18] E.D. Sontag, “Input-to-State Stability: Basic concepts and results,” inNonlinear and Optimal Control Theory, P. Nistri and

G. Stefani, Eds., Berlin, Germany: Springer, 2006, pp. 163-220.

[19] E.D. Sontag and A.R. Teel, “Changing supply functions in input/state stable systems,”IEEE Trans. Automat. Control, vol.

40, no. 8, pp. 1476-1478, 1995.

DRAFT


	Introduction
	Definitions, Standing Assumptions, and Notation
	Main Lyapunov Function Construction
	Proof of Theorem 1
	Robustness Result
	Application: Rössler System
	Extension: More General Feedbacks
	Conclusions
	References

