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The
“Old Fart”

talk

Tone
Gravitas

Perspective

How SHOULD we do Bayesian inference?

Start with basic probability and information theory.

Seek generality including large size.
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Measure m(x).

Associative symmetry (a∨ b) ∨ c = a∨ (b∨ c)
✎✍ ☞✌a b c

implies
m(x ∨ y) = m(x) + m(y) or function(m).

Probability p(x | t) is measure on x: Sum Rule!

Associativity of implication a =⇒ b=⇒ c =⇒ d✎✍ ☞✌α β γ

implies
f
�

p(x | z)
�

= f
�

p(x | y)
�

+ f
�

p(y | z)
�

Consistency with sum rule implies f = log: Product Rule!

Hence Bayes.
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Inference:

INPUTS OUTPUTS

L(x) π(x)dx = Z P (x)dx
Likelihood ! prior = Evidence ! Posterior

4

Information: Separation of distributions p and q ?

Distance( between p and q ) ⊆ { Divergences( to p from q ) }

Divergence( to p from q )
induced by constraints on p

= minimum
constraints on p

of H(p ;q)
variational potential

“Eliminative induction”
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Independence symmetry:

Problem 1 with p1(x1)← q1(x1)

Problem 2 with p2(x2)← q2(x2)




 = Joint problem on (x1,x2) with

p1(x1)p2(x2)← q1(x1)q2(x2)

Hence the information

H(p ;q) =

�
log

�
p(x)

q(x)

�
p(x)dx

is the unique divergence to p from q.

H is non-commutative, H(p ;q) �= H(q ;p), so attempts to define commutative

distance d(p ,q) = d(q ,p) break symmetry of independence.

The only meaningful divergence requires source q to support destination p
(q = 0 forces p = 0) — “p from q” is a compression.

= −entropy S

(direct product of lattices is associative)
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shrink γ
−−−−−→

shrink γ
−−−−−→

shrink γ
−−−−−→

Cost =
�

γ. Benefit =
�

γ = eH(P ; ! ) as required.
Minimum cost needs balanced compressions γ �> O(1).

Prior supports posterior (L <∞).
Posterior need not support prior (L = 0).

Inference is one-way prior-to-posterior compressive.
Compression factor e

H(P ; π) is enormous (H ∼ thousands).
Need e

H(p ;q) samples from q to get 1 from p (compression cost = e
H).

So compression must be iterative: shrink by factor ! = e
H(p ;q) each step.
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Seek balanced compressions. Prior supports entire current context,
so intermediate distributions k are of form

fk(x) π(x)dx

The only function ( aka Radon-Nikodym derivative) we have isL(x).
Coordinate invariance implies form

fk

�
L(x)

�
π(x)dx

Progressively weight
towards higher L.

f

L

k+1

What should f be?

k
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What should the modulating f be?

Practical di! culty: if f varies with L,

fk may have all mass in slab

fk+1 may have all mass in spike

!
"

#
although fk+1 very close to fk

(first-order phase change).

spike (exp high and thin)

slab
x

L

don’t communicate

Exploration won’t detect the transition.

k

k+1

Compression needs to be progressive lower bounds on likelihood L.

f

L

Solution: f = constant or 0.
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Compression needs to be progressive lower bounds on likelihood L.

Do not try to navigate this,
which can be exponentially harder:

Navigate this within an iterate: 1
�

L(x) > constant
�

Raw L(x)
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shrink γ
−−−−−→

shrink γ
−−−−−→

shrink γ
−−−−−→

At each step, haven particles within constraint.
Select r survivors by drawing new constraint through # r +1,
(r = n−1 is most cost-e! ective). Repopulate with n−r new particles.

n = 3 particles constrain within L(#3)
r = 2 survivors

re-populate n = 3

Compression ratio is γ ! (n" 1)/n from Pr(γ) = nγn! 1

� �� �
balanced, known by construction

This method is nested sampling.
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Robust Bayesian computation SHOULD be done by nested sampling.

X (L ∗) =
�

L(x)>L∗
π(x)dx

Nested
L contours

Contour L

encloses

prior mass X
w

=
L

∆
X

Z

L

X
0 1

Posterior P (x) ≈ {xk, weight wk/Z}
EvidenceZ =

� 1
0 LdX ≈

�
L∆X

Start with complete prior of mass X0 = 1 and

compress X0 = 1 to X1 = ! 1, X2 = ! 1! 2, X3 = ! 1! 2! 3, . . .
enclosed by L0 = 0, L1 = L(x1), L2 = L(x2), L3 = L(x3), . . .

where xk is particle location, Lk its computed likelihood, Xk its estimated X.

This tabulates the relationship L(X) — with known uncertainty.

Get log Z ±
�

H/n
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Nested sampling needs to generate new particle from constrained prior,
generally by MCMC from clone of existing source.

new

new

Computational substrate should follow prior assignment
(else huge density changes), so choose coordinates in which prior is flat.
Never make the computer do in arithmetic what you can do in algebra.

Seek systematic motion (not random), best done with specular reflection.
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x2v

proceed

Start x1
OK

Seek systematic motion (not random), best done with specular reflection.
Give particle random initial velocity v, step to x+v and try to keep going
— Galilean Monte Carlo (GMC). Flat exploration ought to be easy!
But steps must be finite — can’t locate boundary exactly.
And never let particle escape — it won’t come back (volume!).

Start with (x1,v) where L(x1) is OK

x2 = x1 + v
if( L(x2) is OK ) proceed (x2,v)
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n

x3

x2v v�

reflect

proceed

Start x1
OK

Seek systematic motion (not random), best done with specular reflection.
Give particle random initial velocity v, step to x+v and try to keep going
— Galilean Monte Carlo (GMC). Flat exploration ought to be easy!
But steps must be finite — can’t locate boundary exactly.
And never let particle escape — it won’t come back (volume!).

Start with (x1,v) where L(x1) is OK

x2 = x1 + v
if( L(x2) is OK ) proceed (x2,v)

else n = unit vector at x2

v� = v − 2n(n.v)

x3 = x2 + v�

if( L(x3) is OK ) reflect (x3,v�)

If gradient ∇L available, use n � ∇L to anticipate boundary orientation.
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n

x3

x2v v�

reverse reflect

proceed

Start x1
OK

If gradient ∇L available, use n � ∇L to anticipate boundary orientation.

Tune steplength v so that “proceed” dominates moderately (Galileo).
Tune pathlength Nv so that expected number of “reverse” is about 1.

Seek systematic motion (not random), best done with specular reflection.
Give particle random initial velocity v, step to x+v and try to keep going
— Galilean Monte Carlo (GMC). Flat exploration ought to be easy!
But steps must be finite — can’t locate boundary exactly.
And never let particle escape — it won’t come back (volume!).

Start with (x1,v) where L(x1) is OK

x2 = x1 + v
if( L(x2) is OK ) proceed (x2,v)

else n = unit vector at x2

v� = v − 2n(n.v)

x3 = x2 + v�

if( L(x3) is OK ) reflect (x3,v�)
else reverse (x1,−v)
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With thanks to a long history, recently including:
Kevin Knuth for symmetries and foundations,
Jos«e Bernardo for divergence,
Radford Neal for snooker,
Farhan Feroz and Michael Betancourt for reßections,
Ñ and you for listening.

WHAT






WHY






SUMMARY

Associative symmetries =⇒ probability calculus L(x)π(x) = ZP (x).

Independence symmetry =⇒ H(p ; q) =
�

log(p/q)dp.

Inference is highly compressive, byeH (P ; π).

Large compression needs iterations with balanced compression�> O(1).

Robustness (to spike & slab) requires progressive lower bounds onL
(Nested Sampling).

Efficient exploration in IR d needs systematic motion across ßat prior
within constraint ( Galilean Monte Carlo, GMC).

Computational inference is becoming aprincipled discipline.
YesterdayÕs algorithms have solved yesterdayÕs problems.
NS/GMC may help to solve your problems and tomorrowÕs.

HOW
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shrink γ
−−−−−→

shrink γ
−−−−−→

shrink γ
−−−−−→

Cost =
�

γ. Benefit =
�

γ = eH(P ; ! ) as required.
Minimum cost needs balanced compressions γ �> O(1).

Prior supports posterior (L <∞).
Posterior need not support prior (L = 0).

Inference is one-way prior-to-posterior compressive.
Compression factor e

H(P ; π) is enormous (H ∼ thousands).
Need e

H(p ;q) samples from q to get 1 from p (compression cost = e
H).

So compression must be iterative: shrink by factor ! = e
H(p ;q) each step.

Seek balanced compressions. Prior supports entire current context,
so intermediate distributions k are of form

fk(x) π(x)dx

The only function ( aka Radon-Nikodym derivative) we have isL(x).
Coordinate invariance implies form

fk

�
L(x)

�
π(x)dx

Progressively weight
towards higher L.

f

L

k+1

What should f be?

k

What should the modulating f be?

Practical di! culty: if f varies with L,

fk may have all mass in slab

fk+1 may have all mass in spike

!
"

#
although fk+1 very close to fk

(first-order phase change).

spike (exp high and thin)

slab
x

L

don’t communicate

Exploration won’t detect the transition.

k

k+1

Compression needs to be progressive lower bounds on likelihood L.

f

L

Solution: f = constant or 0.

Compression needs to be progressive lower bounds on likelihood L.

Do not try to navigate this,
which can be exponentially harder:

Navigate this within an iterate: 1
�

L(x) > constant
�

Raw L(x)

shrink γ
−−−−−→

shrink γ
−−−−−→

shrink γ
−−−−−→

At each step, haven particles within constraint.
Select r survivors by drawing new constraint through # r +1,
(r = n−1 is most cost-e! ective). Repopulate with n−r new particles.

n = 3 particles constrain within L(#3)
r = 2 survivors

re-populate n = 3

Compression ratio is γ ! (n" 1)/n from Pr(γ) = nγn! 1

� �� �
balanced, known by construction

This method is nested sampling.

Nested sampling needs to generate new particle from constrained prior,
generally by MCMC from clone of existing source.

new

new

Computational substrate should follow prior assignment
(else huge density changes), so choose coordinates in which prior is flat.
Never make the computer do in arithmetic what you can do in algebra.

Seek systematic motion (not random), best done with specular reflection.

n

x3

x2v v�

reverse reflect

proceed

Start x1
OK

If gradient ∇L available, use n � ∇L to anticipate boundary orientation.

Tune steplength v so that “proceed” dominates moderately (Galileo).
Tune pathlength Nv so that expected number of “reverse” is about 1.

Seek systematic motion (not random), best done with specular reflection.
Give particle random initial velocity v, step to x+v and try to keep going
— Galilean Monte Carlo (GMC). Flat exploration ought to be easy!
But steps must be finite — can’t locate boundary exactly.
And never let particle escape — it won’t come back (volume!).

Start with (x1,v) where L(x1) is OK

x2 = x1 + v
if( L(x2) is OK ) proceed (x2,v)

else n = unit vector at x2

v� = v − 2n(n.v)

x3 = x2 + v�

if( L(x3) is OK ) reflect (x3,v�)
else reverse (x1,−v)

WHAT






WHY






SUMMARY

Associative symmetries =⇒ probability calculus L(x)π(x) = ZP (x).

Independence symmetry =⇒ H(p ; q) =
�

log(p/q)dp.

Inference is highly compressive, byeH (P ; π).

Large compression needs iterations with balanced compression�> O(1).

Robustness (to spike & slab) requires progressive lower bounds onL
(Nested Sampling).

Efficient exploration in IR d needs systematic motion across ßat prior
within constraint ( Galilean Monte Carlo, GMC).

Computational inference is becoming aprincipled discipline.
YesterdayÕs algorithms have solved yesterdayÕs problems.
NS/GMC may help to solve your problems and tomorrowÕs.

HOW






L(x) π(x)dx = Z P (x)dx
Likelihood × prior = Evidence × Posterior

Information H(p ;q) =
�

log
�

p(x)
q(x)

�
p(x)dx

Robust Bayesian computation SHOULD be done by nested sampling.

X (L ∗) =
�

L(x)>L∗
π(x)dx

Nested
L contours

Contour L

encloses

prior mass X

w
=

L
∆

X

Z

L

X
0 1

Posterior P (x) ≈ {xk, weight wk/Z}
EvidenceZ =

� 1
0 LdX ≈

�
L∆X

Start with complete prior of mass X0 = 1 and

compress X0 = 1 to X1 = ! 1, X2 = ! 1! 2, X3 = ! 1! 2! 3, . . .
enclosed by L0 = 0, L1 = L(x1), L2 = L(x2), L3 = L(x3), . . .

where xk is particle location, Lk its computed likelihood, Xk its estimated X.

This tabulates the relationship L(X) — with known uncertainty.

Get log Z ±
�

H/n
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