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Abstract. At last year’s meeting, Robert and Wraith (2009) gave an account of algorithms in
current statistical practice. After giving an overview of the principles of computational inference,
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mistaken account of nested sampling is corrected.
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PRINCIPLES

Bayesian inference quantifies a joint distribution, factored on input as prior density π
�
θ �

and likelihood L
�
θ � , and on output as evidence Z and posterior density P

�
θ � .

L
�
θ � π

�
θ � dθ� ��� �
prior

� Z P
�
θ � dθ� ��� �

posterior

Prior and posterior are both measures over parameter θ , and all such measures are
related by modulating functions (technically “Radon-Nikodym derivatives”) such as L.
Toy problems apart, we assume that L can be evaluated anywhere but not everywhere,
meaning that it has no analytic integral. Only the prior, and trivial modifications of it, can
be integrated analytically. Hence the measures we seek are represented computationally
as weighted samples � θ 	 1 
�� θ 	 2 
������� , and not as analytic expressions.

Averages such as

Z ��� L
�
θ � π � θ � dθ ��� L � π

can be estimated computationally as sums over random samples. Generally�
f �

g
� � f

�
θ � g � θ � dθ � 1

n

n

∑
i � 1

f
�
θ 	 i 
 � where θ 	 i 
�� g with � g

�
θ � dθ � 1

but there have to be enough samples from g to locate the bulk of f . With complicated
multi-dimensional likelihood functions, this direct Monte Carlo algorithm for Bayesian
inference fails because L confines the posterior to too small a part of the prior.
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Information

The mismatch from source density q to destination density p is quantified by the
information

H
�
p ;q � � � log � p

�
θ �

q
�
θ ��� p

�
θ � dθ �! log

p
q " p

whose exponential exp
�
H � represents compression from q to p. This form is the unique

relationship consistent with the symmetry of independence, that analysing independent
problems together yields the same results as analysing them separately.

Information is asymmetric, H
�
p ;q �$#� H

�
q ; p � . In particular, q must support p, but

p need not support q. This accords with the requirements of inference, where the prior
always supports the posterior (bounded L suffices for this) though the posterior need not
support the prior (because L can be and often is 0).

Inference is one-way prior-to-posterior compressive, controlled by information.

Compression

Only about 1 in exp
�
H � samples from q informs about p. The others miss the bulk of

p, so the cost of a single compression is exp
�
H � . Practical necessity requires H % O

�
1 � to

avoid exponential inefficiency, and this limits what can be done in one step. Interestingly
difficult applications all have extensive data, for which the prior-to-posterior information
H
�
P ;π � greatly exceeds 1, being thousands or maybe millions in line with the dataset

size. Accordingly, practical algorithms must break the problem into steps k, repeatedly
extracting δHk % O

�
1 � bits of information, and then recovering full sampling of the

temporary destination before proceeding to the next iteration.
The overall cost is ∑expδHk whereas the achieved compression is ∏expδHk. Com-

putational efficiency demands balanced steps with roughly equal δHk. Thus Bayesian
computation needs many H

�
P ;π � balanced steps of moderate O

�
1 � compression.

Dimension

Probability is a measure, and measures are commutative P & Q � Q & P so that
elements can be arbitrarily re-ordered.

For example, the 2-dimensional Gaussian likelihood exp
�(')�

x2 & y2 ��* 2 � on uniform
prior can be re-ordered to 1-dimensional exponential exp

�+'
t * 2 � , again on flat prior, by

writing
�
x � y � in polar coordinates as

�
r cosθ � r sinθ � and rastering along a spiral line

r � t1 , 2, θ � λ t, tightly wound with large λ .
One can explore θ � �

x � y � with 2-dimensional steps
�
δx � δy � , or equivalently explore

the 1-dimensional spiral with linear steps δ t. Whether planar or linear exploration is
more efficient depends on the particular likelihood involved. Either way, equilibrated
samples are equivalent, and there’s no way of telling which dimension was used.

Dimension is merely a practical tool that may or may not assist the generation of
exploratory proposals. Dimension isn’t fundamental. Information is.
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Volume

Except in low dimension where smooth interpolation may be allowable, random point
samples do not themselves define accompanying volumes.

Problem 1 has Gaussian likelihood L
�
θ � � exp

�(' 1
2 ∑1000

i � 1 θ 2
i � in a moderate thousand

dimensions, within an encompassing flat prior. There are 21000 orthants and random
samples from any feasible ensemble will almost certainly all be in different ones.
Problem 2 has the same prior and the same likelihood, except that the likelihood restricts
the signs of θ501

����(� θ1000 to be the same as the signs of θ1
������ θ500. Other patterns of

signs have L � 0. The posterior is thus focussed by a factor 2500, and Z is decreased by
this same substantial factor.

Yet the thousand samples will seem much the same as before, with the same L’s and
π’s. Only a particularly astute observer would notice the repetition in-�-/.0-1-/.�.1.0-/.0-2.�.3-2.�.3-�-�-1-/-2.0-4.0-�-4.0-2.0-/-2.0-/-2.0-/-1-2./.0-2.�.�.3-2.3-�-�-�-1-/-�-1-/-/.�./.0-�--2.1.1.1.1.�.0-/.0-1-2.3-�-�-�-2.3-�-/.1-2.0-/-/.3-4.0-�-1-4.�.0-/-�-1-4.1.�./.1.3-2.�.3-2.3-2.�.�.1./.3-/.1-1-�-4.1.3--�-1-/.1.1.�.1.0-/.1.�.�.�.�.3-2.3-2.1./.�.1.1-/.�.1-/.3-/./.�.0-/-�-1-/-1-2./.0-�-�-�-�-2.3-2.�.3-/./.�.0-/-1-�-4.1.3-.�.0-1-/.1.3-/.1.0-/.�.�.�.3-�-�-2.�.1.1-�-1-4.1.�./.1.3-/.1-2.0-4.3-/./.1.3-4.1.3-2.3-�-2.3-2.�.�.1.1-�-1-4.0-�-4.0-2.-�-/.0-/.0-�-/.1.0-/.3-2.3-�-�-2.�.�.1./.�.0-/-1-�-4.1.3-/.1-�-1-/-�-/.1-1-�-4.0-2.3-2.3-2.�.3-�-�-/./.�.0-/-1-�-4.0-2.-�-1-1-/.0-2.1.0-1-/.�.3-2.3-2.3-2.3-/.1-2.1./.1.�.1-/.3-1-4.�.0-4.3-/.1-/.3-4.1.3-2.3-2.3-2.3-�-2.0-4.3-1-/-/.3-/-1-2.-�-/.1.0-/.3-/.0-/.0-2.3-�-�-�-2.�.3-/.1-�-/.1-1-2./.1.�.0-4.3-1-4.3-1-4.0-�-4.1.�.�.3-2.�.�.�.�.�.1./.3-1-4.0-2./.0-�-.�.1.0-/.0-2.1.1.1.0-�-�-�-�-�-2.�.3-/.1-�-/./.1.�.1-1-�-/.1-2.1.1-�-1-/-/.�./.1.�.3-2.�.�.3-�-2.�.0-4.3-1-/-/.3-/-/.3--�-1-1-/.1.�.0-/.1.1.�.3-2.�.3-2.�.3-1-/-�-/.1-1-2./.1.3-/.1-2.1.1-2.1.1-1-�-/-1-2.3-2.3-�-2.3-2.3-1-4.3-1-4.0-�-/-/.�.-2.1.1.0-/.3-1-1-1-1-�-�-�-�-2.�.�.3-1-/-2.1./.1.�./.0-2.0-/-2.0-/-�-1-4.0-�-4.0-2.3-�-2.3-2.3-�-�-/./.3-1-/-1-2./.1.�..3-/.1.0-/.3-/.1.1.1.�.3-2.3-�-�-2.�.0-/-�-1-4.1.�./.1.3-/./.�.1./.�.0-4.0-2./.1.�.�.3-2.�.3-2.3-2.1./.3-1-/-1-�-/-/.�.-�-1-1-1-/.3-/.1.0-/.�.�.3-�-�-�-2.�.0-4.�.0-/-/.�.1-/.�.0-4.�.1./.3-1-/-/.�./.0-�-�-2.�.�.�.�.3-2.0-4.3-/.1-/.�./.0-2..3-/.0-1-/.3-/.1.1.1.3-�-�-2.3-�-2.3-/.1-�-/.1-/.3-/-/.�.0-4.3-/.1-�-1-4.1.�./.1.�.3-�-�-�-2.�.3-2.0-/-�-1-/-/.3-/-1-2.-2.0-/.0-/.�.0-1-1-/.�.�.3-�-�-�-2.3-/.1-�-1-/-/.3-4.1.3-1-4.�.0-4.3-/.1-/.3-4.0-2.�.�.�.�.3-2.3-�-/./.3-/.1-/.3-4.0-2..3-/.0-/.0-2.0-1-/.0-2.3-�-�-2.3-�-�-/.1-�-/./.0-2.1-/.3-/.1-2.0-/-�-1-4.1.3-4.0-�-2.3-�-2.�.�.�.3-/.1-�-/.1-1-2.1-1-2..�.1.0-/.1.�.1.1.1.1.�.3-�-2.3-2.�.3-1-4.�.1.1-/.3-4.1.�.1.1-�-1-/-�-1-4.1.3-4.0-�-2.�.�.�.3-�-�-2.0-4.�.0-/-1-�-4.1.�..�.0-/.1.1.3-1-/.1.0-2.3-�-�-2.3-�-2.0-/-�-1-/-/.�./.0-2.1./.�.0-4.�.0-4.1.3-/-
and that observer could then take credit for a new model with refined prior that gained a
Bayes factor of 2500. But there are myriad similar constraints and in general there’s no
way of knowing that L has been hugely confined.

Point samples don’t know their associated volume, and it’s not generally possible to
get normalisation directly from samples.

IMPORTANCE SAMPLING SCHEMES

The evidence can be written as

Z �5� L
�
θ � π � θ �
ϖ
�
θ � ϖ

�
θ � dθ �  Lπ

ϖ " ϖ

where the arbitrary density ϖ (the “importance function”) need no longer coincide
with π . The relevant information, which defines the efficiency of this procedure, is
H
�
P ;ϖ � , which must not exceed O

�
1 � . In practice, it’s not possible to reduce the

original H
�
P ;π � from thousands or millions to H

�
P ;ϖ �6% O

�
1 � by clever selection

of ϖ . We can’t find an analytic ϖ close enough to P. Especially so, since experienced
users will already have done their best in that direction by choosing suitably sympathetic
coordinates and weights, leaving little scope for improvement.

More fundamentally, importance sampling is based on analytic input π , so it can
only be set up once at the beginning. It can only be iterated by having a sequence of
analytically integrable weights that will only be available in toy problems.
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Bridge sampling

Bridge sampling relates two models, 1 and 2, with common parameters θ and reason-
ably close posteriors. Initially, P2 is used as the sampling distribution ϖ to get the Bayes
factor

B12
� Z1

Z2

�87 L
�
θ � π1

�
θ � dθ

Z2
� 1

Z2
 L

�
θ � π1

�
θ �

P2 " P2

�  π1
�
θ �

π2
�
θ �/" P2

This compressive (from 2 to 1) estimator requires P1 to be supported by P2 with
H
�
P1 ;P2 �9% O

�
1 � . Otherwise, if P1 leaks into regions of small P2, it will be sampled

there at negligible frequency P2 but huge weight 1 * P2, which destroys the estimate by
mixing it with 0 * 0.

R&W then consider use of :π1
�
θ � ' π2

�
θ �;: as the sampling density ϖ . But they

correctly dismiss the suggestion because users would not be able to extract the nec-
essary normalisation 7 ϖ

�
θ � dθ , and because the difference could vanish over impor-

tant regions which would become unsampled. The Bayes factor could then be altered by
changing the models within an unsampled region, so that the estimate (being unchanged)
would necessarily be unreliable.

R&W next write the Bayes factor as

B12
� Z1

Z2

7 α
�
θ � L

�
θ � π1

�
θ � L

�
θ � π2

�
θ � dθ7 α

�
θ � L

�
θ � π1

�
θ � L

�
θ � π2

�
θ � dθ

(the latter fraction is 1) with arbitrary distribution α , which can be rewritten as

B12
�<7 α

�
θ � L

�
θ � π1

�
θ � P2

�
θ � dθ7 α

�
θ � L

�
θ � π2

�
θ � P1

�
θ � dθ

� � αLπ1 � P2� αLπ2 � P1

The conditions for this estimator are rather less restrictive, because it’s only the cross-
over distribution αP1P2 that needs to be adequately supported (both by P1 and by P2).

Of course, Bayes factor estimates don’t yield the evidence relative to a prior that’s
exp(thousands or millions) distant from these posteriors. Also, bridge sampling is diffu-
sive, so inefficient for large-scale compression.

Mixture bridge sampling

Mixture bridge sampling is another method requiring a tractable density ϕ . It uses a
particle labelled by parameter θ and switch δ subject to likelihood defined by=

L
�
θ � δ � �?> wL

�
θ � π � θ � if δ � 1,

ϕ
�
θ � if δ � 2.

which is equilibrated by Gibbs sampling. The equilibrium occupancy ratio is

Pr
�
δ � 1 �

Pr
�
δ � 2 � � w 7 L

�
θ � π � θ � dθ7 ϕ
�
θ � dθ

� wZ
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and this yields Z provided the weight w is tuned to a reasonably appropriate value. At
each exploratory step, a fresh estimate of Pr

�
δ � 1 � is available as wLπ * � wLπ & ϕ � , and

it’s more accurate to average these than to rely on cruder “1 versus 2” occupancy counts.
This proper Bayesian use of the relevant data is called Rao-Blackwellisation.

When w takes its optimal value 1 * Z, the occupancy ratio is 1:1, and equilibration
occurs at its maximum rate

ζ � � P
�
θ � ϕ � θ � dθ

For this to be acceptably speedy, it must not be exponentially small. The crossover
density ρ

�
θ � � P

�
θ � ϕ � θ ��* ζ must be accessible from both P and ϕ .

This can only work for close distributions, and it doesn’t directly relate P to a distant
prior π . Also, the method is one-way analytic-to-ensemble, so not suitable for large-scale
compression.

Harmonic means

Just as the simplest expression for the evidence is Z � � L � π , so the reciprocal gives
the “harmonic mean” formula

1
Z
� 7 π

�
θ � dθ
Z

�5� P
�
θ �

L
�
θ � dθ �  1

L " P

But, just as numerical evaluation of � L � π fails because samples from the prior fail to
find the posterior, so does numerical evaluation of � 1 * L � P fail because samples from the
posterior miss almost all of the prior.

In fact, the situation is even worse. The prior necessarily contains the posterior
somewhere, but the posterior is not required to contain the prior. Model 1 has likelihood
L confined within some domain supported by the prior π1. Model 2 has the same
likelihood L, but prior π2 is diluted by a factor of two because its support has expanded
to twice the size. Clearly Z2

� Z1 * 2 #� Z1. Nevertheless, the posterior is unchanged, and
so are the samples, so the harmonic mean estimates will also be unchanged, @Z2

� @Z1.
This is a definitive counter-example from which the harmonic mean cannot recover.

What’s gone wrong is that the integrand is dominated by huge values of 1 * L where L
is small, whereas those places of small L are sampled at negligible frequency. Thus
the formula is merely an expensive way of calculating 0 * 0. It’s not surprising that
evaluations notoriously have unbounded variance, which should be interpreted as a
symptom warning of incurable failure. More fundamentally, in spaces of moderate or
large dimension, the weights 1 * L soon become dominated by just one or a very few
particularly small L, so that effective sampling is hopelessly inadequate.

Nevertheless, the reciprocal can be written as

1
Z
� 7 ϕ

�
θ � dθ
Z

� � ϕ
Lπ

�
P

for arbitrary density ϕ . R&W uncritically suggest exploiting this by making ϕ narrower
than P. The summation average is then stabilised with finite variance, which would be
fine if this were feasible.
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The problem is that most samples from P miss ϕ and don’t contribute, unless ϕ is only
just narrower than P. The method needs H

�
ϕ ;P �A% O

�
1 � . In a realistically complicated

application with P exponentially narrower than π and defined only by a set of random
samples (quite likely fewer than the dimension), how could such a closely under-fitting
analytic density ϕ be found? And, if such a close density could be found, why not make
it cover P properly and avoid the reciprocal by using direct importance sampling?

R&W’s toy example in two dimensions defines ϕ as a uniform ellipse covering the
top 10% “high posterior density” (HPD) domain. But such a domain rapidly becomes
impossible to locate in spaces of merely moderate dimension. How could one know that
it was fully but only just inside P? The fact that weighted harmonic mean doesn’t fail
in a tiny 2-dimensional example does not mean that the method will be usable for more
difficult problems. It won’t be.

CHIB APPROXIMATION

Chib [2] observed that we can get Z merely by evaluating

Z � L
�
θ � π � θ �3* P

�
θ �

at any convenient θ B , provided we can obtain an estimate @P � θ BC� of the posterior there
(we already know L and π). But point samples do not define their normalisation. Some
sort of iteration between prior and posterior is needed. Chib proposed iterating on
dimension (or blocks of a few dimensions) as follows.

Exploration of the posterior yields an ensemble � θ 	 1 
 ����(� θ 	 N 
 � . Putting aside the
earlier coordinates in n-dimensional θ � �

θ1
� θ2

����(� θn � , the N values � θ 	 1 
n
����+� θ 	 N 
n

�
represent the marginal density P

�
θn � of θn alone. Then (the dangerous step) this marginal

is approximated by an interpolating trapezoid or other analytic form @P � θn � which can be
evaluated as @P � θ Bn � at any chosen θ Bn . With θ Bn now an assigned constant, the procedure
is repeated with dimension reduced by 1, iterating until dimensionality is exhausted.

Iterate Marginal Marginal Assigned Estimated
number as ensemble as interpolant coordinate marginal value

1 P
�
θ4 � @P � θ4 � θ B4 @P � θ B4 �

2 P
�
θ3 : θ B4 � @P � θ3 : θ B4 � θ B3 @P � θ B3 : θ B4 �

3 P
�
θ2 : θ B3 � θ B4 � @P � θ2 : θ B3 � θ B4 � θ B2 @P � θ B2 : θ B3 � θ B4 �

4 P
�
θ1 : θ B2 � θ B3 � θ B4 � @P � θ1 : θ B2 � θ B3 � θ B4 � θ B1 @P � θ B1 : θ B2 � θ B3 � θ B4 �@P � θ B1 � θ B2 � θ B3 � θ B4 �

On completion, the required @P � θ BD� is available as the product of the estimated marginals,
yielding an estimate @Z � L

�
θ B � π � θ B �3*9@P � θ B �
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This is a compressive algorithm (which is good), and it’s ensemble-to-ensemble
(which is essential), though it does rely on dimension (which isn’t fundamental). The
danger point is the diversion through an analytic interpolant. Consider this ensemble of
a dozen uniform-looking 3-digit integers:

171 � 435 � 849 � 675 � 261 � 321 � 159 � 447 � 282 � 876 � 930 � 555 
They were actually generated as integers from

π �FE/GIHKJ4LNM0OQP 100 � 999 R � L � > 1 if divisible by 3,
0 otherwise,

which has Z � 1 * 3. But a user would need to be astute to notice the divisibility property
of the posterior samples, and brave to remove those integers not divisible by 3 from
the support of the estimated interpolant @P. Most users would interpolate the ensemble
with flattish posterior and reach the wrong estimate @Z � 1. The Chib approximation is
effectively blind to microscopic structure.

Of course, there may be no dimension to start with. In the extreme, if the hypothesis
space is a set of equivalent locations (such as the vertices of a simplex), then there are no
prior adjacency relationships from which a dimension might plausibly be constructed.
In that case, the only plausible adjacency derives from likelihood values, suggesting that
the locations be sorted by likelihood. That idea leads naturally to . . . .

NESTED SAMPLING

Nested sampling [3, 4, 5] is based on the one-dimensional representation

Z � � 1

0
L
�
X � dX

of the evidence, where
X
�
L B � �5�

L 	 θ 
TS L U π � θ � dθ

is the prior mass enclosed by likelihood contour L B , and L
�
X � is the inverse which labels

the contour that encloses mass X . The evidence is estimated from likelihood-ordered
samples by quadrature

@Z � ν

∑
i � 1

Li δXi
� δXi

� Xi V 1
'

Xi

where the increasing L’s are known (they are the likelihood values of ν known sample
points θ 	 i 
 ), but the decreasing X ’s are unknown in detail (except by impossibly expen-
sive multidimensional integration) and are estimated statistically.

Iterate i enters with N live points (allowably as few as 1) constrained within L
�
θ �XW

Li V 1 but otherwise sampled uniformly over the prior (and hence over the measure Xi V 1).
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The outermost (smallest L) of these points is taken as the i’th sample θ 	 i 
 with likelihood
Li. It is archived and replaced with a new point within L

�
θ �YW Li to replenish the

ensemble. Meanwhile, the N
'

1 survivors, already uniformly distributed, can be recycled
without change. Adjacent ratios ti

� Xi * Xi V 1 are each distributed as

Pr
�
t � � N tN V 1

because Xi is the outermost of N samples from E/GIHKJ4LNM0O � 0 � Xi V 1 � .
Iterate Lower Ensemble Likelihood Enclosed

number bound ordered by L (increasing) prior mass
L0
� 0 X0

� 1
1 L0 � θ 	 1 
��[Z2����(�[Z/� L1

� L
�
θ 	 1 
 � X1

� t1
2 L1 � θ 	 2 
��[Z2����(�[Z/� L2

� L
�
θ 	 2 
 � X2

� t1t2
3 L2 � θ 	 3 
��[Z2����(�[Z/� L3

� L
�
θ 	 3 
 � X3

� t1t2t3
4 L3 � θ 	 4 
��[Z2����(�[Z/� L4

� L
�
θ 	 4 
 � X4

� t1t2t3t4@Z � ∑LδX

On termination, the estimate @Z is available as a summation. The plausible range of values
of log @Z can be found by taking a few dozen simulations of the t’s.

Compression per step is about 1 part in N (technically, log t � �('
1 \ 1 ��* N � , so it takes

about NH (technically, NH \^] NH) iterates to compress e V H to the typical posterior,
and about the same again to confirm adequate exploration of the interior. The variability
of iterate count induces a rms uncertainty \`_ H * N in logZ. Full analysis is in [6].

In statistical physics, it has been known since the 19th century that all macroscopic
equilibrium properties of a system can be derived (at any temperature) from the density
of states dX * dL. Correspondingly, the relation between X and L is an appropriate target
for computational inference. Nested sampling aims directly at this fundamental target. It
makes no ancillary assumptions about dimensionality or continuity. If the user explores
correctly, nested sampling’s results are statistically guaranteed.

The Wang-Landau method [7] also aims at the density of states, but through a pre-
assigned ladder of likelihood values, on which ratios δX * δL are estimated by up-and-
down diffusion. By contrast, nested sampling already knows the connection between
adjacent levels (it’s the compression t), so diffusion is not needed. Also, nested sam-
pling’s schedule is automatic (1 part in N per step), whereas Wang-Landau requires that
likelihoods be set close enough that δ logX % O

�
1 � , otherwise the diffusive transitions

are too slow. That becomes impossible at a first-order phase transition. Nested sam-
pling’s iterates automatically give the balanced compressions of prior mass anticipated
at the outset.
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Robert and Wraith’s account

R&W begin by referring to [8] (Burrows 1980) as “an earlier related method”, though
that paper used conventional quadrature — an approach necessarily limited to low di-
mension. There was no hint of nested sampling’s statistical methodology or dimensional
invariance.

More controversially, R&W then claimed that “a full convergence assessment” of
nested sampling had been given in Chopin and Robert [9]. This claim refers to a partial
commentary that

(a) failed to treat the correct statistics of nested sampling,
(b) imposed boundedness and continuity conditions that are not required,
(c) used rough order-of-magnitude analysis,
(d) wrongly claimed dependence on dimension.

Nested sampling is invariant to continuity and dimension, so cannot in logic depend
upon such conditions. In fact, the only conditions needed (and the only ones that could
be needed with such wide invariance) are that Z and H

�
P ;π � be bounded. Skilling [6]

shows this by using the correct statistics, and properly treating termination error together
with statistical uncertainty to get explicit numerical upper bounds (depending only on
H) for worst cases. R&W omit this reference although it was given at the same meeting.

R&W suggest that the X ’s “are either deterministic, e.g. Xi
� e V i , N , or random”

(generated by Pr
�
t � above). These aren’t alternatives. The “deterministic” option is just

an approximate simplification which ignores the statistical variability of the compression
ratios t in the interests of convenience.

R&W then write misleadingly that “the nested sampling algorithm relies on an esti-
mate of L

�
Xi � or, equivalently, Xi”. In fact, the L’s are known from the sample likelihoods

L
�
θ � . Only the X ’s are to be estimated, by sampling the clearly-stated distribution Pr

�
t �

of ratios.
R&W proceed carelessly to claim a approximation

Xi * Xi V 1
� �

N
'

1 ��* N
which is badly wrong for small N, and obviously wrong for N � 1. If, for simplicity,
variability is to be ignored, Xi * Xi V 1 should be e V 1 , N from the mean logarithmic com-
pression — there’s no “e.g.” alternative.

Numerical example

R&W furnish a two-dimensional numerical example with flat prior

π
�
θ1
� θ2 � � 1 * 6400 on θ1 a �(' 40 � 40 � , θ2 a �(' 40 � 40 �

and likelihood

L � 1
2πσ

exp � ' θ 2
1

2σ 2

' �
θ2 & β

�
θ 2

1
'

σ 2 ��� 2
2 � where σ � 10 � β � 0  03
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plotted in their Figure 3 (where their outer contour is at 99% not 99.9%). Direct summa-
tion over the prior domain yields

logZ � '
8  7642 � H

�
P ;π � � 3  6249 

With the prior-to-posterior H already O
�
1 � , the efficiency e V H for elementary Monte

Carlo integration � L � π is as high as 1 * 38, making this example a uselessly forgiving
testbed.

Example by PMC

R&W subject the example to a “population Monte Carlo (PMC) mixture importance
sampler”, in which the “importance function to be optimised consists of a mixture of 9
multivariate Student t’s with 9 degrees of freedom for each component”. With 9 b 9 � 81
parameters, such a model ϖ will surely be capable of almost perfect fit to this simple and
smooth likelihood in just two dimensions. Eighty-one parameters may not be enough for
a practical problem but they surely suffice for this toy.

Unsurprisingly, when 50000 points are taken from this best-fit importance function,
direct MC accumulates the evidence Z � � Lπ * ϖ � ϖ to accuracy almost 1 in ] 50000,
leading to a deviation of \ 0  0045 in logZ. That agrees satisfactorily with the bulk of the
range plotted in R&W’s Figure 4 (left), except that the plot shows an upward excess of
about 6 outliers out of 100. Similar outliers appear on the location parameters means θ̄1
and θ̄2 shown in their Figure 5, and presumably they reflect sporadic failure to optimise
the importance function.

R&W do not comment on this repeated danger sign. But they do compare their PMC
analysis which effectively knew the posterior in advance with nested sampling which
had to discover that for itself. In this unfair comparison, it’s not surprising that PMC
calculated Z more accurately.

Example by nested sampling

For nested sampling, R&W use an ensemble of N � 1000 live points. According
to standard nested sampling theory [3, 4, 5], this ought to be sufficient to yield logZ
accurate to \c_ H * N � \ 0  0602, provided that the number of iterates comfortably
exceeds the NH � 3625 steps that are needed to reach the bulk of the posterior before
continuing further to make sure of the interior.

R&W ignore the theory and treat the number of iterates (they used 10000) as merely
empirical. They make no mention of H despite its availability and potential value to the
user, and indeed to the programmer seeking sanity checks on reasonable results.

Correct evaluation requires adequate exploration. To re-equilibrate a sample point,
R&W take 50 steps of a random walk of step length 0.1 (they refer to 0.1 as a variance,
but apparently intend standard deviation). Yet 50 steps of length 0.1 can only diffuse
a distance of 0  1 ] 50 � 0  7 which is far short of the O

�
20 � distance that their Figure
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5 indicates as apparently necessary. Inadequate exploration would, of course, bias Z
downwards by failing to find the desired regions of high likelihood.

R&W instead report (Figure 4) that 100 runs yield deviations 0  17 \ 0  12 above
the true logZ (mean and standard deviation inferred from the plotted quartiles). They
claim that the “results suggest that nested sampling exhibits a slight upward bias for
the evaluation of the evidence” (my italics). Yet the “90 positive versus 10 negative”
bias in their plot is visually obvious to any informed reader. It has chance probability
2 V 100 100! * 90!10! � 1  4 b 10 V 17, which is hugely significant. Far from being “slight”,
its presence (if correct) would clearly demonstrate a disastrous flaw. R&W offer no
explanation, and invite the reader to believe that nested sampling can’t even get this
trivial problem right.

Actually, nested sampling cannot possibly behave like this. Downward bias points to
inadequate exploration, whereas upward bias can only be mistaken programming (earlier
private correspondence to author). In R&W’s case, the variability is a factor of two above
the predicted \ 0  06, confirming erroneous implementation.

My own nested sampling computation with 1000 runs using adequate explora-
tion led to deviations from the true logZ of 0  0022 \ 0  0614, with quartiles at'

0  0398 � 0  0037 � 0  0462. This is in proper statistical agreement with 1000 samples
from the theoretically predicted 0 \ 0  0602.

Contrary to R&W’s presentation and claim, nested sampling gives no detected bias
and the variability is as predicted.

COMMENTARY

A principled approach to inference shows that computation of large-scale problems
requires systematic iterative compression from prior to posterior. Dimension doen’t
matter: information H does. Point samples do not yield their distribution’s normalisation,
except in dimensions so low that smooth interpolation may be allowed.

Distributions can either be coded analytically (and thereby evaluated anywhere), or
as an ensemble of live points. The power of an analytical approach rapidly fades in the
presence of a complicated likelihood function, so iterations need to process ensembles.
Analytic forms only appear at the beginning, where the prior is analytic, and at the end,
where an approximate analytic summary may be passed to the user for undefined future
use.

Many algorithms require symmetrical detailed balance, but that’s not necessary and
indeed is inefficient for compression. There is a place for back-and-forth diffusive
methods such as bridge sampling when models are close enough to communicate when
programmed together, but the main compression should be systematic. Here, nested
sampling, for which compression factors are directly available by construction, seems
the natural approach. The alternative Chib approximation relies on analytic interpolation
which blinds it to small-scale structure.

When choosing an algorithm, keep basic principles in mind. Do not naïvely believe
the literature (particularly the mistaken accounts of nested sampling in [1, 9, 10]). Do
not choose an algorithm just for what it’s claimed to do, but sceptically seek what it can
not do.
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