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Abstract. Nested sampling is a powerful approach to Bayesian inference ultimately limited by the
computationally demanding task of sampling from a heavily constrained probability distribution.
An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently
sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte
Carlo, I introduce a general implementation of the nested sampling algorithm.
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BAYESIAN INFERENCE

Bayesian inference is a diverse and robust analysis methodology [1, 2] based on Bayes’
Theorem,

p(α|D ,H) =
p(D |α,H) p(α|H)

p(D |H)
≡ L (α)π (α)

Z
,

where information about the parameters α is extracted from the data D . All model
assumptions are captured by the conditioning hypothesis H.

While Bayes’ Theorem is simple enough to formulate, in practice the individual
components are often sufficiently complex that analytic manipulation is not feasible and
one must resort to approximation. One of the more successful approximation techniques,
Markov Chain Monte Carlo (MCMC) produces samples directly from the posterior
distribution that are often sufficient to characterize even high dimensional distributions.
The one manifest limitation of MCMC, however, is the inability to directly calculate the
evidence Z.

Nested sampling [3] is an alternative to sampling from the posterior that instead
emphasizes the calculation of the evidence.

NESTED SAMPLING

Consider the support of the likelihood above a given bound L,

α̃ = {α|L (α) > L},

and the associated prior mass across that support,

x(L) =
∫

α̃

dm
α π (α) .



The differential dx gives the prior mass associated with the likelihood L = L (α),

dx(L) = d
∫

α̃

dm
α π (α) =

∫
∂ α̃

dm
α π (α)

where ∂ α̃ is the m−1 dimensional boundary of constant likelihood,

∂ α̃ = {α|L (α) = L}.

Introducing the coordinate α⊥ perpendicular to the likelihood constraint boundary
and the m− 1 coordinates α‖ parallel to the constraint, the integral over ∂ α̃ simply
marginalizes α‖ and the differential becomes

dx(L) =
∫

∂ α̃

dα⊥dm−1
α‖π (α)

dx(L) = dα⊥

∫
∂ α̃

dm−1
α‖π (α)

dx(L) = dα⊥π (α⊥) .

Returning to the evidence,

Z =
∫

dm
α L (α)π (α)

Z =
∫

dα⊥dm−1
α‖L (α)π (α) .

By construction the likelihood is invariant to changes in α‖ and the integral simplifies to

Z =
∫

dα⊥L (α⊥)
∫

dm−1
α‖π (α)

Z =
∫

dα⊥L (α⊥)π (α⊥)

Z =
∫

dxL(x)

where L(x) = L (α⊥ (x)) is the likelihood bound resulting in the prior mass x.
This clever change of variables has reduced the m dimensional integration over the

parameters α to a one dimensional integral over the bounded support of x. Although this
simplified integral is easier to calculate in theory, it is fundamentally limited by the need
to compute L(x).

Numerical integration, however, needs only a set of points (xk,Lk) and not L(x)
explicitly. Sidestepping L(x), consider instead the problem of generating the set (xk,Lk)
directly.

In particular, consider a stochastic approach beginning with n samples drawn from
π (α). The sample with the smallest likelihood, Lmin, bounds the largest x but otherwise
nothing can be said of the exact value, xmax, without an explicit, and painful, calculation
from the original definition.



The cumulative probability of xmax, however, is simply the probability of xmax exceed-
ing the x of each sample,

P(xmax) = P(x1 ≤ xmax) · · ·P(xn ≤ xmax)

P(xmax) =
∫ xmax

0
dxπ (x) · · ·

∫ xmax

0
dxπ (x)

P(xmax) =
(∫ xmax

0
dxπ (x)

)n

where π (x) is uniformly distributed:

π (x) =
∫

∂ α̃

dm−1
α‖π (α (x))

∣∣∣∣dα

dx

∣∣∣∣
π (x) =

∫
∂ α̃

dm−1
α‖π (α (x))

1
π (α⊥ (x))

π (x) = π (α⊥ (x))
1

π (α⊥ (x))

π (x) =
{

1, 0≤ x≤ 1
0, otherwise .

Simplifying, the cumulative probability of the largest sample reduces to

P(xmax) =
(∫ xmax

0
dxπ (x)

)n

=
(∫ xmax

0
dx
)n

= xn
max

with the corresponding probability distribution

p(xmax) =
dP(xmax)

dxmax
= nxn−1

max .

Estimating xmax from the probability distribution p(xmax) immediately yields a pair

(x1 = xmax,L1 = Lmin) .

A second pair follows by drawing from the constrained prior

π̃ (α) ∝

{
π (α) , L (α) > L1

0, otherwise

or, in terms of x,

, π̃ (x) =
{

1/x1, 0≤ x≤ x1
0, otherwise .

n samples from this constrained prior yield a new minimum L2 with x2 distributed as

p(x2|x1) =
n
x1

(
x2

x1

)n−1



Making another point estimate gives (x2,L2).
Generalizing, the n samples at each iteration are drawn from a uniform prior restricted

by the previous iteration,

π̃ (x) =
{

1/xk−1, 0≤ x≤ xk−1
0, otherwise .

The distribution of the largest sample, xk, follows as before,

p(xk|xk−1) =
n

xk−1

(
xk

xk−1

)n−1

.

Note that this implies that the shrinkage at each iteration, tk = xk/xk−1, is identically
and independently distributed as

p(tk) = p(t) = ntn−1
k .

Moreover, a point estimate for xk can be written entirely in terms of point estimates for
the tk,

xk =
xk

xk−1
· xk−1

xk−2
. . .

x1

x0
· x0 = tk · tk−1 . . . t2 · x0 =

(
k

∏
i=1

ti

)
x0.

More appropriate to the large range common to many problems, logxk becomes

logxk = log

(
k

∏
i=1

ti

)
x0 =

k

∑
i=1

log ti + logx0,

where the logarithmic shrinkage is distributed as

p(log t) = nen log t

with the mean and standard deviation

log t =−1
n
± 1

n
.

Taking the mean as the point estimate for each log ti finally gives

log
xk

x0
=−k

n
±
√

k
n

.

Parameterizing xk in terms of the shrinkage proves immediately advantageous – because
the log ti are independent, the errors in the point estimates tend to cancel and the estimate
for the xk grow increasingly more accurate with k.

At each iteration, then, a pair (xk,Lk) is given by the point estimate for xk and the
smallest likelihood of the n drawn samples.



A proper implementation of nested sampling begins with the initial point
(x0 = 1,L0 = 0). At each iteration, n samples are drawn from the constrained prior

π̃ (α) ∝

{
π (α) , L (α) > Lk−1

0, otherwise

and the sample with the smallest likelihood provides a “nested” sample with Lk =
L (αk) and logxk = − k

n . L (αk) defines a new constrained prior for the following
iteration. Note that the remaining samples from the given iteration will already satisfy
this new likelihood constraint and qualify as n−1 of the samples necessary for the next
iteration – only one new sample will actually need to be generated.

As the algorithm iterates, regions of higher likelihood are reached until the nested
samples begin to converge to the maximum likelihood. Determining this convergence
is tricky, but heuristics have been developed that are quite successful for well behaved
likelihoods [3, 4].

Once the iterations have terminated, the evidence is numerically integrated using the
nested samples. The simplest approach is a first order numerical quadrature:

Z ≈∑
k

(xk−1− xk)Lk

Errors from the numerical integration are dominated by the errors from the use of point
estimates and, consequently, higher order quadrature offers little improvement beyond
the first order approximation.

The remaining obstacle to a fully realized algorithm is the matter of sampling from
the prior given the likelihood constraint L > Lmin. Sampling from constrained distri-
butions is a notoriously difficult problem but a slight extension of Hamiltonian Monte
Carlo offers samples directly from the constrained prior and provides an immediate im-
plementation of nested sampling.

CONSTRAINED HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo [1, 5, 6] is an efficient method for generating samples from
the m dimensional probability distribution

p(x) ∝ exp [−E (x)] .

First, consider instead the larger distribution

p(x,p) = p(x) p(p)

where the latent variables p are i.i.d. standardized Gaussians

p(p) ∝ exp
(
−1

2
|p|2
)

.

The joint distribution of the initial x and the latent p is then

p(x,p) ∝ exp
(
−1

2
|p|2−E (x)

)
= exp(−H)



where H ≡ 1
2 |p|

2 +E (x) takes the form of the Hamiltonian of classical mechanics.
Applying Hamilton’s equations

dx
dt

=
∂H
∂p

= p

dp
dt

=−∂H
∂x

=−∇E (x)

to a given sample {x,p} produces a new sample {x′,p′}. Note that the properties of
Hamiltonian dynamics, in particular Liouville’s Theorem and conservation of H, guar-
antee that differential probability masses from p(x,p) are conserved by the mapping.
As a result, this dynamic evolution serves as a transition matrix T (x,p;x′,p′) with the
invariant distribution p(x,p). Moreover, the time reversal symmetry of the equations
ensures that the evolution satisfies detailed balance:

T
(
x,p;x′,p′

)
= T

(
x′,p′;x,p

)
.

Because H is conserved, however, the transitions are not ergodic and the samples do
not span the full support of p(x,p). Ergodicity is introduced by adding a Gibbs sampling
step for the p. Because the x and p are independent, sampling from the conditional
distribution for p is particularly easy

p(p|x) = p(p) =
m

∏
i=1

N (0,1) .

The algorithm proceeds by alternating between dynamical evolution and Gibbs sam-
pling and the resulting samples {xk,pk} form a proper Markov chain.

In practice the necessary integration of Hamilton’s equations cannot be performed an-
alytically and one must resort to numerical approximations. Unfortunately, any discrete
approximation will lack the symmetry necessary for both Liouville’s Theorem and en-
ergy conservation to hold, and the exact invariant distribution will no longer be p(x,p).
This can be overcome by treating the evolved sample as a Metropolis proposal, accepting
proposed samples with probability

P(accept) = min(1,exp(−∆H)) .

Further implementation details, particularly insight on the choice of step size and total
number of steps, can be found in [6].

Now consider the constrained distribution

p̃(x) ∝

{
p(x) , C (x)≥ 0

0, else .

Sampling from p̃(x) is challenging. The simplest approach is to sample from p(x)
and discard those not satisfying the constraint. For most nontrivial constraints, however,
this approach is extremely inefficient as the majority of the computational effort is spent
generating samples that will be immediately discarded.



FIGURE 1. Cartoon of a particle bouncing off the constraint boundary C(x) = 0. (a) At step i + 2
the particle violates the constraint, at which point (b) the normal at xi+2 is computed and the momenta
reflected in lieu of the normal leapfrog update. (c) The next spatial update is no longer in violation of the
constraint.

From the Hamiltonian perspective, the constraint becomes an infinite barrier

Ẽ (x) =
{

E (x) , C (x)≥ 0
∞, else .

Incorporating infinite barriers directly into Hamilton’s equations is problematic, but
physical intuition provides an alternative approach. Particles incident on an infinite
barrier bounce, the momenta perpendicular to the barrier perfectly reflecting:

p′ = pT −pN = p−2(p · n̂) n̂.

Instead of dealing with infinite gradients, then, one can replace the momenta updates
with reflections when the equations integrate beyond the support of p̃(x).

Discrete updates proceed as follows. After each spatial update the constraint is
checked and if violated then the normal n̂ is computed at the new point and the en-
suing momentum update is replaced by reflection (Fig 1). Note that the spatial update
cannot be reversed, nor can an interpolation to the constraint boundary be made, without
spoiling the time-reversal symmetry of the evolution.

For smooth constraints C (x)≥ 0 the normal is given immediately by

n̂ = ∇C (x)/ |∇C (x)| .

The normal for many discontinuous constraints, which are particularly useful for sam-
pling distributions with limited support without resorting to computationally expensive
exponential reparameterizations, can be determined by the geometry of the problem.

Finally, if the evolution ends in the middle of a bounce, with the proposed sample
laying just outside of the support of p̃(x), it is immediately rejected as the acceptance
probability is zero,

P(accept) = exp(−∆H) = exp(−∞) = 0.

Given a seed satisfying the constraint, the resultant Markov chain bounces around
p̃(x) and avoids the inadmissible regions almost entirely. Computational resources are
spent on the generation of relevant samples and the sampling proceeds efficiently no
matter the scale of the constraint.



Application to Nested Sampling

Constrained Hamiltonian Monte Carlo (CHMC) naturally complements nested sam-
pling by taking

p(x)→ π (α)
C (x)→L (α)−L.

The CHMC samples are then exactly the samples from the constrained prior necessary
for the generation of the nested samples. A careful extension of the constraint also allows
for the addition of a limited support constraint, making efficient nested sampling with,
for example, gamma and beta priors immediately realizable.

Initially, the n independent samples are generated from n Markov chains seeded at
random across the full support of π (α). After each iteration of the algorithm, the
Markov chain generating the nested sample is discarded and a new chain is seeded
with one of the remaining chains. Note that this new seed is guaranteed to satisfy
the likelihood constraint and the resultant CHMC will have no problems bouncing
around the constrained distribution to produce the new sample needed for the following
iteration.

A suite of C++ classes implementing nested sampling with CHMC is available for
general use at http://web.mit.edu/~betan/www/code.html . The accompany-
ing documentation provides comprehensive details of the implementation.

CONCLUSIONS

Constrained Hamiltonian Monte Carlo is a natural addition to nested sampling, the
combined implementation allowing efficient and powerful inference for any problem
with a smooth likelihood.
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