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Abstract. Policy search is a successful approach to reinforcement learning. However, policy im-
provements often result in the loss of information. Hence, it has been marred by premature con-
vergence and implausible solutions. As first suggested in the context of covariant or natural policy
gradients, many of these problems may be addressed by constraining the information loss. In this
paper, we continue this path of reasoning and suggest two reinforcement learning methods, i.e., a
model-based and a model free algorithm that bound the loss in relative entropy while maximizing
their return. The resulting methods differ significantly from previous policy gradient approaches and
yields an exact update step. It works well on typical reinforcement learning benchmark problems
as well as novel evaluations in robotics. We also show a Bayesian bound motivation of this new
approach [8].
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INTRODUCTION
Policy search is a reinforcement learning approach that attempts to learn improved poli-
cies based on information observed in past trials or from observations of another agent’s
actions [1, 2]. However, policy search, as most reinforcement learning approaches, is
usually phrased in an optimal control framework where it directly optimizes the ex-
pected return. As there is no notion of the sampled data or a sampling policy in this
problem statement, there is no connection between finding an optimal policy and stay-
ing close to the observed data. In an online setting, many methods can deal with this
problem by staying close to the previous policy (e.g., policy gradient methods allow
only small incremental policy updates). Hence, approaches that allow stepping further
away from the data are problematic, particularly, off-policy approaches. Directly opti-
mizing a policy will automatically result in a loss of data as an improved policy needs to
forget experience to avoid the mistakes of the past and to aim on the observed successes.
However, choosing an improved policy purely based on its return favors biased solu-
tions that eliminate states in which only bad actions have been tried out. This problem
is known as optimization bias [3]. Optimization biases may appear in most on- and off-
policy reinforcement learning methods due to undersampling (e.g., if we cannot sample
all state-actions pairs prescribed by a policy, we will overfit the taken actions), model
errors or even the policy update step itself.

Policy updates may often result in a loss of essential information due to the policy im-
provement step. For example, a policy update that eliminates most exploration by taking
the best observed action often yields fast but premature convergence to a suboptimal
policy. This problem was observed by Kakade [4] in the context of policy gradients.



There, it can be attributed to the fact that the policy parameter update δθ was maxi-
mizing its collinearity δθ T ∇θ J to the policy gradient while only regularized by fixing
the Euclidian length of the parameter update δθ T δθ = ε to a step-size ε . Inspired by
Amari’s work [5] in supervised learning, Kakade [4] concluded that the identity metric
of the distance measure was the problem, and that the usage of the Fisher information
metric F(θ) in a constraint δθ T F(θ)δθ = ε leads to a better, more natural gradient.
Bagnell and Schneider [6] clarified that the constraint introduced in [4] can be seen as
a Taylor expansion of the loss of information or relative entropy between the path dis-
tributions generated by the original and the updated policy. Bagnell and Schneider’s [6]
clarification serves as a key insight to this paper.

In this paper, we propose a new method based on this insight, that allows us to es-
timate new policies given a data distribution both for off-policy or on-policy reinforce-
ment learning. We start from the optimal control problem statement subject to the con-
straint that the loss in information is bounded by a maximal step size. Note that the
methods proposed in [6, 4, 2] used a small fixed step size instead. As we do not work
in a parametrized policy gradient framework, we can directly compute a policy update
based on all information observed from previous policies or exploratory sampling distri-
butions. All sufficient statistics can be determined by optimizing the dual function that
yields the equivalent of a value function of a policy for a data set. We show that the
method outperforms the previous policy gradient algorithms [2] as well as SARSA [1].

Background & Notation
We consider the regular reinforcememt learning setting [1, 7] of a stationary Markov

decision process (MDP) with n states s and m actions a. When an agent is in state s, he
draws an action a∼ π(a|s) from a stochastic policy π . Subsequently, the agent transfers
from state s to s′ with transition probability p(s′|s,a) = Pa

ss′ , and receives a reward
r(s,a) = Ra

s ∈ R. As a result from these state transfers, the agent may converge to a
stationary state distribution µπ(s) for which

∀s′ : ∑s,a µ
π(s)π(a|s)p(s′|s,a) = µ

π(s′) (1)

holds under mild conditions, see [7]. The goal of the agent is to find a policy π that
maximizes the expected return

J(π) = ∑s,a µ
π(s)π(a|s)r(s,a), (2)

subject to the constraints of Eq.(1) and that both µπ and π are probability distributions.
This problem is called the optimal control problem; however, it does not include any
notion of data as discussed in the previous section. In some cases, only some features of
the full state s are relevant for the agent. In this case, we only require stationary feature
vectors

∑s,a,s′ µ
π(s)π(a|s)p(s′|s,a)φs′ = ∑s′ µ

π(s′)φs′. (3)

Note that when using Cartesian unit vectors us′ of length n as features φs′ = us′ , Eq.(3)
will become Eq.(1). Using features instead of states relaxes the stationarity condition
considerably and often allows a significant speed-up while only resulting in approximate
solutions and being highly dependable on the choice of the features. Good features may
be RBF features and tile codes, see [1].



BOUNDING RELATIVE ENTROPY LOSS IN REINFORCEMENT
LEARNING

We will show both a model-based and a model-free approach here.

Model-based RL with Bounded Relative Entropy Loss
Our method aims at finding the optimal policy that maximizes the expected return

based on all observed series of states, actions and rewards. At the same time, we intend
to bound the loss of information measured using relative entropy between the observed
data distribution q(s,a) and the data distribution pπ(s,a) = µπ(s)π(a|s) generated by the
new policy π . Ideally, we want to make use of every sample (s,a,s′,r) independently,
hence, we express the information loss bound as

D(pπ ||q) = ∑s,aµ
π(s)π(a|s) log

µπ(s)π(a|s)
q(s,a)

≤ ε, (4)

where D(pπ ||q) denotes the Kullback-Leibler divergence, q(s,a) denotes the observed
state-action distribution, and ε is our maximal information loss. The problem can hence
be stated as follows:

max
π,µπ

J(π) = ∑s,aµ
π(s)π(a|s)Ra

s , (5)

s.t. ε ≥∑s,aµ
π(s)π(a|s) log

µπ(s)π(a|s)
q(s,a)

, (6)

∑s′µ
π(s′)φs′ = ∑s,a,s′µ

π(s)π(a|s)Pa
ss′φs′, (7)

1 = ∑s,aµ
π(s)π(a|s). (8)

Both µπ and π are probability distributions and the features φs′ of the MDP are stationary
under policy π .

Without the information loss bound constraint in Eq.(6), there is no notion of sam-
pled data and we obtain the stochastic control problem where differentiation of the Lan-
grangian also yields the classical Bellman equation φ T

s θ = Ra
s − λ + ∑s′ P

a
ss′φ

T
s′ θ . In

this equation, φ T
s θ = Vθ (s) is known today as value function while the Langrangian

multipliers θ become parameters and λ the average return. While such MDPs may be
solved by linear programming [9], approaches that employ sampled experience cannot
be derived properly from these equations. The key difference to past optimal control ap-
proaches lies in the addition of the constraint in Eq. (6). As discussed in the introduction,
natural policy gradient may be derived from a similar problem statement. However, the
natural policy gradient requires that ε is small, it can only be properly derived for the
path space formulation and it can only be derived from a local, second order Taylor ap-
proximation of the problem. Stepping away further from the sampling distribution q will
violate these assumptions and, hence, natural policy gradients are inevitably on-policy1.

1 Note that there exist sample re-use strategies for larger step away from q using importance sampling,
see [1, 10, 11], or off-policy approaches such as Q-Learning (which is known to have problems in
approximate, feature-based learning).



The ε can be chosen freely where larger values lead to bigger steps while excessively
large values can destroy the policy. Its size depends on the problem as well as on the
amount of available samples. As shown in the appendix, we can obtain the optimal
policy

π(a|s) =
q(s,a)exp

(
1
η

δθ (s,a)
)

∑b q(s,b)exp
(

1
η

δθ (s,b)
) , (9)

where δθ (s,a) = Ra
s +∑s′ P

a
ss′Vθ (s′)−Vθ (s) denotes the Bellman error. Here, the value

function Vs(θ) = θ T φs is determined by minimizing

g(θ ,η) = η log
(
∑s,aq(s,a)exp

(
ε +

1
η

δθ (s,a)
))

, (10)

with respect to θ and η . The value function Vθ (s) = φ T
s θ appears naturally in the deriva-

tion of this formulation (see Appendix). The new error function Eq.(10) for obtaining
the value functions’s parameters θ differs substantially from traditional temporal differ-
ence errors, residual gradient errors and monte-carlo rollout fittings [1, 7]. The presented
solution is derived for arbitrary stationary features and is therefore sound with function
approximation. The derived policy is similar to the Gibbs policy used in policy gradient
approaches [7] and in SARSA [1]. In order to turn proposed solution into algorithms,
we need to efficiently determine the solution (θ ∗,η∗) of the dual function g. Eq. (10)
can be rewritten as

min
θ ,η̃

g(θ , η̃) = η̃
−1 log∑

s,a
exp(logq(s,a)+ ε + η̃δθ (s,a)) ,

which is known to be convex [12] as δθ (s,a) is linear in θ . Given that g is convex and
smoothly differentiable, we can determine the optimal solution g(θ ∗,η∗) efficiently with
any standard optimizer such as Broyden–Fletcher–Goldfarb–Shannon (BFGS) method
(denoted in this paper by fmin_BFGS(g,∂g,[θ0,η0]) with ∂g = [∂θ g,∂ηg]).

Model-free RL with Bounded Relative Entropy Loss
Obviously, the algorithm as presented in the previous section would be handicapped

by maintaining a high accuracy model of the Markov decision problem (Ra
s ,Pa

ss′).
Model estimation would require covering prohibitively many states and actions, and it is
hard to obtain an error-free model from data [13, 1]. Furtheremore, in most interesting
control problems, we do not intend to visit all states and take all actions — hence, the
number of samples N may often be smaller than the number of all state-action pairs mn.
Thus, in order to become model-free, we need to rephrase the algorithm. To our great
surprise, this part turned out to be simpler than expected. We introduced zero mean state
action features φsa in addition to our state feature φs. Hence, we can change Eqns.(6,7)
to

ε ≥ ∑
s,a,s′

µ
π(s)π(a|s)Pa

ss′ log
µπ(s)π(a|s)Pa

ss′

q(s,a,s′)
,

and ∑a′,s′ µ
π(s′)π(a′|s′)(φs′a′ +φs′) = ∑s,a,s′ µ

π(s)π(a|s)Pa
ss′φs′ . Hence, we also obtain

the constraint ∑a,s µπ(s)π(a|s)φsa = 0. It is straightforward to realize that these zero



mean features have to realize in an Advantage Function. We obtain a policy

π(a|s)≈
∑

T
t=0 Ist=s,at=a exp

(
1
η

(
r(st ,at)+Vst+1 − (Astat +Vst )

))
∑

T
t=0 Ist=s exp

(
1
η

(
r(st ,at)+Vst+1 − (Astat +Vst )

)) ,

and have a critic of

g ≈−η log

((
∑

T
t=0 exp

(
ε +

1
η

(
r̄(st ,at)+Vst+1 − (Astat +Vst )

)))−1
)

.

These methods are clearly model-free.

A Motivation for using Relative Entropy for Regularization
As shown below, relative entropy D(µπ(s)π(a|s)‖q(s,a)) counts possible

configurations (or “free energy”) of the system and the weighted difference
J(π) − ηD(µπ(s)π(a|s)‖q(s,a)) (the “total energy”) is bounded. Inspired by [8],
we can derive

J(π) = ∑
s,a

µ
π(s)π(a|s)Ra

s

= η ∑
s,a

µ
π(s)π(a|s) log

(
µπ(s)π(a|s)

q(s,a)

(
e

1
η

Ra
s
) q(s,a)

µπ(s)π(a|s)

)
= ηD(µ

π(s)π(a|s)‖q(s,a))+η ∑
s,a

µ
π(s)π(a|s) log

((
e

1
η

Ra
s
) q(s,a)

µπ(s)π(a|s)

)

≤ ηD(µ
π(s)π(a|s)‖q(s,a))+η log

(
∑
s,a

µ
π(s)π(a|s)

(
e

1
η

Ra
s
) q(s,a)

µπ(s)π(a|s)

)
(11)

= ηD(µ
π(s)π(a|s)‖q(s,a))+η log

(
∑s,aq(s,a)e

1
η

Ra
s
)

, (12)

where Eq.(11) is by Jensen’s inequality. From the last equation we obtain that:

J(π)−ηD(µ
π(s)π(a|s)‖q(s,a))≤ η log

(
∑s,aq(s,a)e

1
η

Ra
s
)

.

The right hand side of the last equation is fixed, whereas the left hand side depends
on π(a|s). This motivates maximization of the left hand size (as a function of π(a|s))
to achieve an equality, which corresponds to proper utilization of degrees of freedom.
Note, the stationarity constraint is not considered here.

EXPERIMENTS
In the following section, we test our Sample-based Policy Iteration with Relative Entropy
Policy Search approach using first several example problems from the literature and,
subsequently, on the Mountain Car standard evaluation. Subsequently, we show first
steps towards a robot application currently under development.
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FIGURE 1. Three different methods are compared on three toy examples. The vanilla policy gradients
are significantly outperformed due to their slow convergence as already discussed by Bagnell and Schnei-
der (2003) for the Two State Problem. Policy iteration based on Relative Entropy Policy Search (REPS)
exhibited the best performance.

Example Problems
We compare our approach both to ‘vanilla’ policy gradient methods and natural policy

gradients [6, 2] using several toy problems. As such, we have chosen (i) the Two-State
Problem [6], (ii) the Single Chain Problem [14], and (iii) the Double Chain Problem
[14]. In all of these problems, the optimal policy can be observed straightforwardly
by a human observer but they pose a major challenge for ‘vanilla’ policy gradient ap-
proaches.We used unit features for all methods. For the two policy gradient approaches a
Gibbs policy was employed [7, 6]. On all three problems, we let our policy run until the
state distribution has converged to the stationary distribution. For small problems like
the presented ones, this usually takes less than 200 steps. Subsequently, we update the
policy and resample. We take highly optimized vanilla policy gradients with minimum-
variance baselines [2] and the Natural Actor-Critic with unit basis functions as additional
function approximation [2]. Instead of a small fixed learning rate, we use an additional
momentum term in order to improve the performance. We tuned all meta-parameters of
the gradient methods to maximum performance. We start with the same random initial
policies for all algorithms and average over 150 learning runs. Nevertheless, similar as in
[6, 2], we directly observe that natural gradient outperforms the vanilla policy gradient.
Furthermore, we also observe that our REPS policy iteration yields a significantly higher
performance. The performance of all three methods for all three problems is shown in
Fig. 1 (a-c).



Mountain-Car Problem
The mountain car problem [1] is a well-known problem in reinforcement learning.

2: Performance on the
mountain-car problem.

We adapt the code from [15] and employ the same tile-
coding features for both SARSA and REPS. We imple-
ment our algorithm in the same settings and are able
to show that REPS policy iteration also outperforms
SARSA. While SARSA is superficially quite similar to
the presented method, it differs significantly in two parts,
i.e., the critic of SARSA converges slower, and the ad-
ditional multiplication by the previous policy results in a
faster pruning of taken bad actions in the REPS approach.
As a result, REPS is significantly faster than SARSA as
can be observed in Fig. 2.

Primitive Selection in Robot Table Tennis
Table tennis is a hard benchmark problem for robot learning that includes

most difficulties of complex skills. The setup is shown in Fig. 3. A key problem

3: Simulated setup for learning
robot table tennis.

in a skill learning system with multiple motor primitives
(e.g., many different forehands, backhands, smashes,
etc.) is the selection of task-appropriate primitives trig-
gered by an external stimulus. Here, we have generated
a large set of motor primitives that are triggered by a
gating network that selects and generalizes among them
similar to a mixture of experts. REPS improves the gat-
ing network by reinforcement learning where any suc-
cessful hit results as a reward of +1 and for failures no
reward is given. REPS appears to be sensitive to good initial sampling policies. The
results vary considerably with initial policy performance. When the system starts with
an initial policy that has a success rate of ∼24%, it may quickly converge prematurely
yielding a success rate of ∼39%. If provided a better initialization, it can reach success
rates of up to ∼59%.

DISCUSSION & CONCLUSION
In this paper, we have introduced a new reinforcement learning method called Relative
Entropy Policy Search. It is derived from a principle as previous covariant policy gra-
dient methods [6], i.e., attaining maximal expected reward while bounding the amount
of information loss. Unlike parametric gradient method, it allows an exact policy up-
date and may use data generated while following an unknown policy to generate a new,
better policy. It resembles the well-known reinforcement learning method SARSA to
an extent; however, it can be shown to outperform it as the critic operates on a dif-
ferent, more sound cost function than traditional temporal difference learning, and as
its weighted “soft-max” policy update will promote successful actions faster than the
standard soft-max. We have shown that the method performs efficiently when used in a
policy iteration setup. REPS is sound with function approximation and can be kernelized



straightforwardly which offers interesting possibilities for new algorithms. Application
of REPS for reinforcement learning of motor primitive selection for robot table tennis
has been successful in simulation.
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DERIVATION OF MODEL-BASED RL WITH BOUNDED
RELATIVE ENTROPY LOSS

We denote psa = µπ(s)π(a|s) and µπ(s) = ∑a psa for brevity of the derivations, and give
the Lagrangian for the program in Eqs.(5-8) by

L=

(
∑
s,a

psaR
a
s

)
+η

(
ε −∑

s,a
psa log

psa

qsa

)
+∑

s′
θ

T

(
∑
s,a

psaP
a
ss′φs′−∑

a′
ps′a′φs′

)
(13)

+λ

(
1−∑

s,a
psa

)
=∑

s,a
psa

(
Ra

s −η log
psa

qsa
−λ−θ

T
s φs+∑

s′
Pa

ss′θ
T
s′ φs′

)
+ηε +λ ,

where η , θ and λ denote the Lagrangian multipliers.We substitute Vs = θ T φs. We dif-
ferentiate ∂psaL = Ra

s −η log(psa/qsa)+η −λ +∑s′P
a
ss′Vs′−Vs = 0, and obtain psa =

qsa exp(η−1 (Ra
s +∑s′ P

a
ss′Vs′−Vs

)
)exp(1−λ/η). Given that we require ∑s,a psa = 1,

it is necessary that exp(1−λ/η)−1 = ∑s,aqsa exp(η−1 (Ra
s +∑s′ P

a
ss′Vs′−Vs

)
, (hence,

λ depends on θ ), and we can compute psa as a direct function of η and θ . We
can extract a policy using π(a|s) = psa/∑a psa, and hence optain Eq. (9). Reinsert-
ing these results into Eq.(13), we obtain the dual function g(θ ,η ,λ ) = −η + ηε +
λ = −η log(exp(1−λ/η)exp(−ε)), which can be rewritten as Eq.(10) by inserting
exp(1−λ/η)−1. The derivation of the Model-free RL Algorithm with Bounded Rela-
tive Entropy Loss follows analogously.


