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Abstract. In the presented paper the results of superstatistics methods are given to study 
growing networks with exponential topology. Topologies of strongly inhomogeneous growing 
networks are determined. In the framework of maximum entropy method the probability 
distribution of real networks is derived and their classification is discussed.  
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INTRODUCTION 

In the past few years it was established that in the basis of the complex architecture 
of real-world networks there are universal principles. Analysis of real world complex 
networks shows that many of them have a scale-invariant topology. The network 
approach has proved itself a powerful tool for analyzing the structural complexity of 
systems [1,2].  

Classification of real-world networks shows that  they can be divided into random 
network Erdos-Renyi and small-world network of Watts-Strogatz and growing scale-
invariant networks (uncorrelated and correlated) [3]. The data analysis shows that for 
every complex system is a network with nontrivial topology. From the data analysis 
we determine the order for the set of millions nodes and links, forming a complex 
network. At present simple algorithms are developed to generate random, correlated 
and uncorrelated scale-invariant networks. It is possible to study the stability of these 
networks and random failures and targeted attacks, as well as the spreading processes 
on networks. Despite the fact that in the real world growing networks combined 
mechanisms of growth act, the basic growth principles of networks are well known. 

This paper is devoted to the study of nonequilibrium networks with spatio-temporal 
fluctuations of intensive parameters on a large scale. 

 



SUPERSTATISTICAL APPROACH TO STUDYING COMPLEX 
SYSTEMS 

Complex systems in nature exhibit a rich structure of dynamics, described by a 
mixture of different stochastic processes on various time scales. Such dynamical 
processes with time scale separation are described in the framework of the 
superstatistical approach [4, 5, 6, 7]. To explain the idea of the superstatistical 
approach we start with a simple example. 

Consider processes subject to both additive and multiplicative noises described by 
the dimensionless stochastic differential equation of the form 

 
 ( ) ( ) ( ) ( )ttugufu ηξ ++=&  (1) 
 
where ( )tu  is a stochastic variable, f  and g  are arbitrary functions and ( )tξ  and ( )tη  
are uncorrelated and Gaussian-distributed zero-mean white noises, hence satisfying 
 
 ( ) ( ) ( )ttMtt ′−=′ δξξ 2  and ( ) ( ) ( )ttAtt ′−=′ δηη 2  (2) 
 
where 0>M  and 0>A  are the noise amplitude and stand for multiplicative and 
additive, respectively [8]. 

The Fokker-Plank equation for probability density ( )tuP , , associated to equation 
(1) , can be obtained from the Kramers – Moyal expansion 
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where the coefficients are given by  
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Using the Stratonovich definition of stochastic integral, one gets 
 

 ( ) ( ) ( ) ( ) ( )uguMguftuD ′+=,1  (5) 
 ( ) ( ) ( )[ ]22 , ugMAtuD +=  (6) 

 
while ( ) ( ) 0, =tuD n  for 3≥n . 

Then, the Fokker-Planks equation has the form  
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is the current.  

Now suppose that ( ) σ=ug , where σ  is constant and ( ) uuf γ−= . For further 
study we shall assume that 0=A . In this case ( ) ( ) utuD γ−=,1  and ( ) ( ) 22 , σMtuD = . 

Then, using the ( ) 0,
=

∂
∂

t
tuP  the stationary Fokker-Plank equation can be written as  
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We will restrict to the stationary solutions for no flux boundary conditions (i.e., 
such as ( ) ( ) 0=∞=∞− stst jj ). Then using the ( ) 0, =±∞uP , we get ( ) 0=ujst . In this 
case, one obtains 
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The solution of this equation can be written as follows 
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In superstatistical approach “local equilibrium” is meant in a generalized sense for 
suitable observables of the system dynamics under consideration. In the long term, the 
stationary distribution of a superstatistical inhomogeneous system arises as 

superposition of a local factor 
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 with various values of β  weighted with a global 
probability density ( )βf   to observe some value β  in a randomly chosen cell. 

While on the time scale T the local stationary distribution in each cell is Gaussian 
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exhibits non trivial behavior.  
For example, if ( )βf  is 2χ -distribution of degree n  equation (12) generates 

Tsallis statistics, with entropic index q  given by
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Discussing physically relevant superstatistical universality classes it should be 
noted that there are three physically relevant universality classes: (1) 2χ -statistics 
(=Tsallis statistics), (2) inverse 2χ - superstatistics and (3) lognormal superstatistics 
[6]. These arise as universal limit statistics for many different complex systems. In 
principle of course, other classes of universality are possible. 

 

SUPERSTATISTICAL APPROACH TO STUDYING COMPLEX 
NETWORKS 

If a given set of N  nodes is connected by a fixed number of links in a completely 
random manner, the result is a random network Erdos – Renyi, whose degree 
distribution is Poissonian i.e., the probability that a randomly chosen node has degree 

k  is given by ( )
!k

ekp
k λλ −

= , where k=λ  is the average degree of all nodes in the 

network. In [9] it was assumed that λ  in random networks is fluctuating according to 
distribution ( )λΠ . In this sense a network with any degree distribution can be 
presented as a ‘superposition’ if random networks with the given degree distribution 

are ( ) ( )∫
∞ −

Π=
0 !k

edkp
k λλλλ . In [9] it was shown that a power-law functional form of 

( )λΠ  leads to degree distribution of Zipf-Mandelbrot form, ( ) ( ) γ−+ kkkp 0~ , which 
is equivalent to a q -exponential with an argument of κ/k , and given the 
substitutions, ( ) 01 kq−=κ  and ( )( )γ/11/11 ++=q . 

Consider the growing networks with exponential degree distribution. Initially, the 
system has 0m  unconnected nodes. Every time the system added a node with m  
( 0mm ≤ ) edges, in accordance with a uniform distribution the process of linking with 
existing network nodes takes place. In this case, the degree distribution of the network 
represented by the expression 
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0

dkkkPm  — average degree of node. 

The essential difference between the networks of Erdos-Renyi and exponential 
networks is as follows. The principle of connection edges with nodes in the networks 
of Erdos-Renyi and exponential networks is the same. However, in networks of Erdos-
Renyi all nodes have the same age, then, as in exponential networks, age sites are 
different. This, in particular, leads to the fact that the exponential networks are 
assortative, while the network Erdos - Renyi are uncorrelated. It arises because of the 
principles distinction of networks formation. 

Let us discuss the applicability of the principles of superstatistics to analyze 
networks with exponential topology. 



Let the system have local worlds where there is growth of networks with an 
exponential distribution ( )mkp , but to the average degree m  of local worlds are 
distributed according to some distribution ( )mf . Then, using Bayes' theorem the 
distribution of the entire system can be obtained in the form [10] 
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In fact, we are dealing with the integral equation, namely, the known ( )kP  and 
( )mf  and need to find a solution ( )mkp . In the case of networks with exponential 

degree distribution we are dealing with the integral equation in the form 
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In our case, we multiply both sides of this equation by sk  and integrate from zero 
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In the inner integral we introduce variable km=ς  and after integration we lead to 
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Using the definition of the Mellin transformation we obtain 
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By the Mellin inversion formula 
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we determine the solution of the integral equation. 
For a network with the exponential topology, we have the degree 

distribution ( ) kmkme
k

kmP −=
1 . Assume that the degree distribution of the entire 

system is a Tsallis distribution  
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where ( )xΓ  is gamma function, we find that the probability distribution of average 
degrees in local worlds has the form of gamma distribution  
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Let a degree distribution of entire system be defined by function of the parabolic 
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we consider a network with an exponential degree distribution ( ) kmkme
k
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find that   

 ( )
2

2
1

2
1 m

emf
−

=
π

 (23) 

 
Let's note that normal distribution can be received as a limiting case binomial 
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density. 
Thus, in case of an exponential network when fluctuations of average degrees in the 

local worlds is the normal distribution then degree distribution of entire system 
described by distribution ( )( )4/exp~ 22 kk −− .  

Let temporary evolution of a local world be carried out in correspondence to the 
following algorithm: at the initial moment in a network there are 0m  isolated nodes 
and in each discrete time in a network the new vertex with m  edges are added. Every 
edge of new vertex is connected with node presented at a network randomly. 

Let at each moment of time from each local world a new local world is born where 
the growth of a network with exponential topology takes place at subsequent moments 
of time regardless of other local worlds.  

As the mean value of the vertex degree is determined in each local world 
as mk = , the number of edges that arrive with the given vertex in the local worlds 

should be taken from the distribution ( )mk =ρ . Therefore, the vertices that come 
into various local worlds have different number of edges; the distribution of these 
edges’ number is described by the distribution ( )mρ . The cohesiveness of such a 
system may be achieved with homogeneous connection of local worlds at the expense 



of edges that arrive into the network. Then the Bayes theorem leads us to the 
distribution for the entire system in the following form:  
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It is obvious that different distributions ( )xΠ  lead to different probability 
distributions ( )kP .  

However it is possible to show also, that exponential network topology with scale 
invariant ( )βΠ  fluctuations of β  can not exit. 

PRINCIPLE MAXIMUM ENTROPY TO STUDYING COMPLEX 
NETWORKS 

The study of results of data on networks topology shows that basically topology of 
the studied networks are described by distribution  

 

 ( )
( ) ( )( ) ( )1/1

011

1
−

−−+
= q

auq
up

νβ
 (25) 

where [ ]2,1∈ν . Let's discuss the derivation of such type of distributions in the 
framework of a maximum entropy principle. Note that Shannon entropy has been 
extended in several ways. One particular generalization is Havrda-Chavrat α -entropy  
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Shannon entropy is the special case of (26) as 1→α . 
Using the maximum entropy principle we shall show that an entropy (26) with 

restrictions  
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leads to the distribution function  
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Really, according to a method of Lagrange we form expressions 
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Here 0α  and β  are Lagrange factors. Equation (31) may be rewritten as  
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from which we define 0α . Substitution of expression 0α  into equation (31) allows us 
to define 
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Here ( ) ββ axgaxg −+=− 0 .  
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From equation (34) it follows that if 1=b  at 1→α  we get an exponential 
distribution whereas 2=b  we get a normal distribution. 

Thus, variable α  allows us to make classification of systems on the level of a 
degree of complexity of systems whereas b  allows us to define a distribution function 
of the initial simple systems. 
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