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Abstract. In this paper we develop a supervised classification approach for medium and high reso-
lution multichannel synthetic aperture radar (SAR) amplitude images. The proposed technique com-
bines finite mixture modeling for probability density function estimation, copulas for multivariate
distribution modeling and a Markov random field (MRF) approach to Bayesian classification. The
novelty of this research is in introduction of copulas to classification of D-channel SAR, with D > 3,
within the mainframe of finite mixtures - MRF approach. This generalization results in a flexible and
well performing multichannel SAR classification technique. Its accuracy is validated on several mul-
tichannel Quad-pol RADARSAT-2 images and compared to benchmark classification techniques.
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INTRODUCTION

The last decades have witnessed an intensive development and a significant increase of
interest to remote sensing, and, in particular, to synthetic aperture radar (SAR) image
processing. This paper focuses on the supervised SAR image classification, which is
one of the fundamental SAR image processing problems. Recently, various models have
been proposed for modeling the single channel statistics of SAR data [1], however, nei-
ther is general and flexible enough to model the joint probability density function (pdf)
in case of D-channel SAR, D > 3. In this paper we propose a joint pdf model for multi-
channel SAR, based on finite mixture modeling for marginal pdf estimation and copulas
for multivariate distribution modeling. We apply this model to medium and high resolu-
tion multichannel SAR amplitude image classification by combining it with a contextual
Markov random field (MRF) approach [2] that allows to take into account the contextual
information and to gain robustness against the inherent noise-like phenomenon of SAR
known as speckle. The finite mixture modeling is done via a recently proposed SAR-

1 Email: vkrylov@cs.msu.ru.



specific dictionary-based stochastic expectation maximization (DSEM) approach [3, 4],
that is applied to class-conditional amplitude probability density function estimation
separately to all the SAR channels. For modeling the class-conditional joint distributions
of multichannel data the statistical concept of copulas [5] is employed, and a dictionary-
based copula selection method is proposed. The contribution of this study is the general-
ization of the recently considered DSEM - MRF classification approach [6] to D-channel
SAR, D > 3, via copulas, and its experimental validation on several multichannel Quad-
pol RADARSAT-2 images with a comparison to benchmark classification techniques.

METHODOLOGY

Method overview

We consider the supervised classification of a D-channel SAR image with M target
classes and we assume training pixels to be available for all the classes.

Marginal-step. The marginal pdf of each channel for each class is estimated sepa-
rately by applying DSEM to the training pixels. The mixture DSEM pdfs pdm(yd|ωm)
and the corresponding cumulative distribution functions (CDFs) Fdm(yd|ωm), where ωm
is the event of observing the m-th class, are as follows:

pdm(yd|ωm) =
Kdm

∑
i=1

Pdmi pdmi(yd|θdmi), Fdm(yd|ωm) =
Kdm

∑
i=1

PdmiFdmi(yd|θdmi), (1)

where m = 1, . . . ,M, d = 1, . . . ,D, yd are the observed amplitudes and Kdm are the
numbers of mixture components. Fdmi and pdmi represent the i-th mixture component
in the CDF and pdf domains, respectively, and Pdmi are the related mixture proportions.

Copula-step. The joint pdfs pm(y|ωm) for classes m = 1, . . . ,M are constructed from
marginals (1) by means of automatically selected from a specific dictionary copulas C∗m:

pm(y|ωm) = p1m(y1) · · · pDm(yD)
∂ DC∗m

∂y1 · · ·∂yD
(F1m(y1), . . . ,FDm(yD)). (2)

Contextual-step. To take into account the contextual information disregarded by the
pixel-based Copula-DSEM pdfs (2) and to gain robustness against the inherent noise-
like phenomenon of SAR known as speckle, we adopt a contextual approach based
on an MRF model. Following a classical definition of an MRF [2], we consider a two
dimensional lattice S with N pixels {si} and class labels x = {xi}, xi ∈ {1, . . . ,M} and
introduce an isotropic second-order neighborhood system C with cliques of size 2. The
resulting MRF energy function for the class labels is parameterized by β > 0:

H(x|β ) = ∑
{s,s′}∈C

[−β δxs=xs′
]
, with δxs=xs′ =

{
1, if xs = xs′

0, otherwise
.

In a hidden MRF model, the unobserved class labels are modeled as an MRF and the
observations are conditionally independent given labels [2]. Given (2) and denoting the



value of vector y at pixel i as yi, the hidden MRF energy function is the following:

U(ωm|y,β ) = ∑
i∈S

[
− log pm(yi|ωm)−β ∑

s:{i,s}∈C

δxi=xs

]
. (3)

In order to estimate β in (3), we suggest to use a simulated annealing procedure [7]
with pseudo-likelihood function PL [2] of the following form:

logPL(x|β ) = log

[
∏
s∈S

p(xs|xS\{s},β )

]
= log


∏

s∈S

exp(−U(xs|xS\{s},β ))

∑
zs∈XS

exp(−U(zs|xS\{s},β ))


 , (4)

and xs = {ω1, . . . ,ωM}. We employ N(βt ,1) as a proposal distribution [6] and exponen-
tial decrease Tt = 0.95 ·Tt−1 as a cooling schedule. The β -estimation is performed on
maximum likelihood preclassification map, associating with every pixel of the image a
label with the highest probability assigned by the context-free Copula-DSEM model (2).

Optimization-step. This step involves the minimization of the energy (3)-(4). For
this optimization problem an iterative deterministic Modified Metropolis Dynamics
(MMD) [8] algorithm is adopted. It is a compromise approach between fast but local
deterministic Iterated Conditional Modes algorithm [2], and global yet slow Simulated
Annealing [7]. As such, MMD is computationally feasible and provides reasonable
results in real classification problems [8] and in our optimization problem. Structurally,
MMD algorithm proceeds as follows:
1. sample a random initial configuration ω0; set k = 0 and temperature T0 = T 0;
2. increase k; using a uniform distribution pick a state η which differs exactly in one
element from ωk;
3. compute ∆U = U(η)−U(ω) and accept η according to the rule:

ωk+1 =

{
η , if ∆U 6 0 or ln(α) 6−∆U

Tk
6 0,

ωk, otherwise.

where α ∈ (0,1) is a constant threshold, chosen once at the start of the algorithm;
4. decrease Tk+1 = τ ·Tk, and goto Step 2 until convergence, i.e. ∆U/U < γ is fulfilled.

Dictionary-based Stochastic Expectation Maximization

To take into account the heterogeneity scenario, when several distinct land-cover
typologies are present in the same SAR image, a finite mixture model (FMM) for
the distribution of grey levels is assumed. Specifically, the dictionary-based stochastic
expectation maximization (DSEM) approach developed in [3, 4] is applied to estimate
marginal class-conditional statistics. Here, we follow the notations in [4] and refer
to it for more details. Separately focusing on each class ωm and each channel yd ,
we assume the training samples to be i.i.d. random variables, drawn from a mixture



TABLE 1. DSEM dictionary D of parametric pdf families with MoLC equations

Family Probability density function MoLC equations

Log-normal p1(r) = 1
σr
√

2π exp
[
− (lnr−m)2

2σ2

]
, r > 0 κ1 = m

κ2 = σ2

Weibull ∗ p2(r) = η
µη rη−1 exp

[
−

(
r
µ

)η]
, r > 0 κ1 = ln µ +Ψ(1)η−1

κ2 = Ψ(1,1)η−2

Nakagami † p3(r) = 2
Γ(L) (λL)L r2L−1 exp

(−λLr2
)
, r > 0 2κ1 = Ψ(L)− lnλL

4κ2 = Ψ(1,L)

Generalized Gamma p4(r) = ν
σΓ(κ)

( r
σ
)κν−1 exp

{
−( r

σ
)ν

}
, r > 0 κ1 = Ψ(κ)/ν + lnσ

κ j = Ψ( j−1,κ)/ν j, j = 2,3

∗ Ψ(·) the digamma function and Ψ(ν , ·) the ν th order polygamma function [9]
† Γ(·) is the gamma function [9]

pdf p(r) = ∑K
i=1 Pi pi(r), r > 0, with K components, where pi(·) is the i-th mixture

component, i = 1, . . . ,K, and {Pi} is a set of mixing proportions, i.e., ∑K
i=1 Pi = 1

and 0 < Pi < 1. Each component pi(·) is modeled by resorting to a finite dictionary
D = {p1, . . . , p4} (see Table 1) of four SAR specific distinct parametric pdfs p j(r|θ j),
parameterized by θ j ∈ A j, j = 1, . . . ,4.

For this mixture estimation problem we use the iterative stochastic expectation max-
imization (SEM) scheme [10]. The convergence properties of SEM have been proved
under suitable assumptions [10], which do not hold strictly for all the pdfs in D. How-
ever, we recall that SEM, compared to the classical EM or other deterministic variants for
FMM estimation, was specifically designed to improve the exploratory properties of EM
in case of multimodal likelihood function [10]. Instead of adopting the maximum likeli-
hood estimates as the classical SEM scheme [10] suggests, DSEM employs the Method
of Log-Cumulants (MoLC) [3] for component parameter estimation. Based on the
Mellin transform [9], MoLC allows to formulate a set of equations relating the unknown
parameters of a given parametric pdf with several sample log-cumulants (see Table 1).
MoLC has been demonstrated to be an effective estimation tool for all the pdfs in D [4].

Each iteration of DSEM goes as follows (everywhere i = 1, . . . ,Kt , j = 1, . . . ,M):
• E-step: for each greylevel z = 0, . . . ,Z− 1 and ∀i, compute the posterior probability
estimates corresponding to the current pdf estimates:

τ t
i (z) =

Pt
i pt

i(z)

∑Kt
j=1 Pt

j pt
j(z)

,

with greylevel labels sz ∈ {σ1, . . . ,σKt}, assigning each greylevel z to one of the mixture
components, and pt

i(·) being the σi-conditional pdf estimate on the t-th step.
• S-step: ∀z sample the label st(z) according to the posterior distribution {τ t

i (z)}.
• MoLC-step: for the i-th mixture component, compute the following histogram-based
estimates of the mixture proportions and the first three log-cumulants:

Pt+1
i =

∑z∈Qit h(z)

∑Z−1
z=0 h(z)

, κ t
1i =

∑z∈Qit h(z) lnz

∑z∈Qit h(z)
, κ t

bi =
∑z∈Qit h(z)(lnz−κ t

1i)
b

∑z∈Qit h(z)
,



TABLE 2. Dictionary of copula families C(u) with θ(τ) dependencies.

Family C(u) θ(τ) dependence

Clayton C1(u) = (u−θ
1 + · · ·+u−θ

D −D+1)−1/θ θ = 2τ
1−τ

Gumbel-Hougaard C2(u) = exp
(
−[

(− log(u1))θ + · · ·+(− log(uD))θ ]1/θ
)

θ = 1
1−τ

Frank C3(u) =− 1
θ ln

(
1+ (e−θu1−1)···(e−θuD−1)

(e−θ−1)D−1

)
τ = 1− 4

θ 2

θ∫
0

t
e−t−1 dt

where b = 2,3; h(z) is the image histogram; Qit = {z : st(z) = σi} is the set of grey
levels assigned to the i-th component; then, solve the corresponding MoLC equations
(Table 1) for each parametric family f j(·|θ j) in D, resulting in MoLC estimates θ t

i j.
• K-step: ∀i: if Pt+1

i < γ , eliminate the i-th component; update Kt+1. The choice of
threshold γ does not appreciably affect DSEM, provided it is small, e.g. 0.005.
• Model Selection-step: ∀i = 1, . . . ,Kt+1, compute the log-likelihood of each
estimated pdf f j(·|θ t

i j) according to the data assigned to the i-th component:
Lt

i j = ∑z∈Qit h(z) ln f j(z|θ t
i j), and define pt+1

i (·) as the estimated pdf f j(·|θ t
i j) yield-

ing the highest value of Lt
i j.

Copulas

For the purpose of modeling the joint distribution of a D-channel SAR image, given
the estimates of the related marginal distributions, we employ copulas [5]. In the lit-
erature, various models have been proposed for the marginal statistics of SAR ampli-
tudes [1], however, none of them is general and flexible enough to model a joint pdf in
case of multichannel SAR data for each class. In order to overcome this limitation, we
merge the marginal pdfs provided by DSEM into a joint pdf by means of copulas.

A D-dimensional copula is a function C : [0,1]D → [0,1], which satisfies:

1. C(u) = 0 for any u: ∃i ∈ {1, . . . ,D} so that ui = 0.
2. C(u) = ud for any u: ui = 1, for all i 6= d.
3. the D-increasing condition: for any 0 6 ui,1 6 ui,2 6 1, where i = 1, . . . ,D,

VC ≡
2

∑
i1=1

· · ·
2

∑
iD=1

(−1)(i1+···+iD)C(u1,i1, . . . ,uD,iD) > 0.

The important property of copulas is given by the Sklar’s theorem [5], which states
the existence of a copula C, that models the joint distribution H of arbitrary random
variables Y1, . . . ,YD with CDFs F1, . . . ,FD: H(y) = C(F1(y1), . . . ,FD(yD)), ∀y ∈ RD. In
this paper we consider one-parameter archimedean copulas [5]. This class provides
a representative panel of joint pdf forms and has easy parameter estimation tech-
niques [5, 11]. For parameter estimation we use the copula’s connection with Kendall’s
τ ranking coefficient:

τ +1 = 4
∫

[0,1]2
C(u1,u2)dC(u1,u2),



(a) RS1 image, VV pol (b) manual GT (c) K-NN-MRF

(d) Copula-DSEM-MRF 3 (e) Copula-DSEM-MRF 2

FIGURE 1. (a) RS1 image (1000 × 700 pixels) in VV pol, RADARSAT-2 Data and Products
©MacDonald, Dettwiler and Associates Ltd., 2008 - All Rights Reserved. (b) Manually created ground
truth (GT) and classification maps obtained by: (c) K-NN-MRF on HH/HV/VV, (d) Copula-DSEM-MRF
on HH/HV/VV and (e) Copula-DSEM-MRF on HH/VV. Automatically selected copulas: Gumbel for
“water/wet” and “vegetation”, Frank for “urban”.

where C(u,v) is a 2-copula of the same type and τ is the average of D(D− 1)/2 con-
sistent Kendall’s τ estimates corresponding to different bivariate marginals (Yd1,Yd2):
τ = 4

N(N−1) ∑
i6= j

I[Yi,d1 6Yj,d1 ]I[Yi,d2 6Y j,d2]−1. The use of Kendall’s tau based parameter

estimation is explained by a relatively small number of samples N employed [11].
The dictionary of employed archimedean copulas include Clayton, Gumbel-Hougaard

and Frank copula families (Table 2). This is a very basic set, yet it allowed to achieve
good results and it will be studied further. The choice of a best fitting copula C∗m
in the dictionary for every class m = 1, . . . ,M, is based on a dedicated criterion:
we choose the copula with the highest p-value provided by a Pearson Chi-square
test-of-fitness (PCS) [12]. PCS tests the null hypothesis that the sample frequencies
(F1m(y1), . . . ,FDm(yD)), m = 1, . . . ,M, are consistent with the theoretical probabilities

for the copula Cc(y), c = 1,2,3. Its statistics
n
∑

i=1

(Oi−Ei)2

Ei
is asymptotically χ2

n−r−1 dis-

tributed [12], with Oi and Ei the observed and the hypothetical frequencies, respectively,
n the number of clusters and r the number of parameters for Copula-DSEM pdfs (2).

EXPERIMENTS

The developed multichannel supervised classification approach has been tested on
Single-look, Fine Quad-Pol HH/HV/VH/VV, 7.5 m resolution RADARSAT-2 amplitude



(a) RS2 image, HV (b) manual GT (c) Co-DSEM-MRF (d) K-NN-MRF

FIGURE 2. (a) RS2 image (500 × 700 pixels) in HV pol, RADARSAT-2 Data and Products
©MacDonald, Dettwiler and Associates Ltd., 2008 - All Rights Reserved. (b) Manually created
ground truth (GT) and classification maps obtained by: (c) Copula-DSEM-MRF on HH/HV/VV and
(d) K-NN-MRF on HH/HV/VV. See color legend on Fig. 1. Automatically selected copulas: Gumbel
for “water/wet”, Frank for “vegetation” and “urban”.

TABLE 3. Classification accuracies on the considered test images: by classes, average and overall

Image Method “Water/wet” “Vegetation” “Urban” Average Overall

RS1 Copula-DSEM-MRF on HH/HV/VV 98.04% 90.33% 71.49% 86.61% 88.69%
K-NN-MRF on HH/HV/VV 98.85% 89.02% 62.89% 83.59% 86.42%

Copula-DSEM-MRF on HH/VV 98.97% 87.16% 58.74% 81.62% 84.78%
RS2 Copula-DSEM-MRF on HH/HV/VV 97.30% 95.12% 86.12% 92.85% 94.18%

K-NN-MRF on HH/HV/VV 98.10% 96.06% 81.33% 91.83% 93.51%

images of Vancouver RS1 (Fig. 1) and RS2 (Fig. 2). It is well known that HV and VH
polarizations provide very similar information [1], thus, D = 3 channels HH/HV/VV
without VH were employed in experiments. The experiments involved the classification
into M = 3 classes: “water/wet”, “vegetation” and “urban”. In Marginal-step, DSEM
was initialized with K0 = 3 mixture components. For PCS test in Copula-step, n = 25
of equal-sized square clusters was selected. In Optimization-step, parameters were set
to T 0 = 5.0, α = 0.3, τ = 0.97, γ = 10−4. The training was performed on a 100× 100
subimage endowed with a manually annotated nonexhaustive ground truth, not overlap-
ping with the test areas.

Table 3 reports the accuracies of the developed Copula-DSEM-MRF approach: “by
class”, “average” (i.e., the arithmetic mean of the class accuracies) and “overall” (i.e.,
the percentage of correctly classified test samples, irrespective of their classes). The
classification results are compared visually (Fig. 1, Fig. 2) and quantitatively (Table 3)
with the nonparametric K-nearest neighbors [13] classification method combined with
an MRF, with K∗ = 35 was estimated by cross-validation [13]. On both images the ac-
curacy demonstrated by our method is higher, especially for the “urban” class. On RS1
image, we also provide a comparison with Copula-DSEM-MRF classification based on 2
channels HH/VV to demonstrate the accuracy gain from model generalization to D > 3.



CONCLUSIONS

In this paper a generalized method for supervised multichannel SAR image classifi-
cation is developed, based on a previously proposed approach [6]. It generalizes the
concept of finite mixture combined with Markov random field classification approach
to D-channel SAR images, D > 3, via copulas. The resulting classification technique is
flexible and performs well in experiments with high resolution Quad-Pol RADARSAT-2
images, thanks to a modeling flexibility provided by copulas and a dictionary-based
copula selection approach.

The directions of further research include the study of a more specific copula dictio-
nary, e.g., by including non-symmetric copulas, and the specialization of the model to ur-
ban area classification, e.g., by incorporating geometrical features into the MRF model.
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