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Abstract.
We present SASC, Self-Adaptive Semantic Crossover, a new class of crossover operators for

genetic programming. SASC operators are designed to induce the emergence and then preserve
good building-blocks, using meta-control techniques based on semantic compatibility measures.
SASC performance is tested in a case study concerning the replication of investment funds.
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1. INTRODUCTION

Genetic Programming (GP) are evolutionary algorithms that work on populations,
whose individuals represent possible (viable) solutions to the optimization problem, see
Banzhaf et al.(1998) and Koza el al.(1992,94). The solution functions, code or programs
defining an individual are its genotype, while the image, graph or output of these func-
tions are the individual’s phenotype. An adaptation, cost or fitness function, computed
from an individual’s phenotype, is the optimization problem’s objective function.

GP are meta-heuristics based on some key functions and operators inspired on evolu-
tion theories for biological species. Reproduction operators generate new individuals, the
children, from existing ones, their parent(s), hence expanding the population. Mutation
operators act on single individuals, for asexual reproduction, while crossover operators
act on pairs of individuals, for sexual reproduction. A mutation operation generates a
random change in the parent’s code. This change is usually small, but may have impor-
tant consequences for the individual fitness, often bad, but sometimes good. A crossover
operation generates new children by swapping portions of their parents’ codes at ran-
domly selected recombination points.

Reproduction operators are random operators. However, they only introduce a limited
amount of entropy (noise or disorder) in the process, making it possible for children to
inherit many characteristics coded by their parents’ genotype. GP starts from an initial
population that may be randomly generated. The population then evolves according to
the random reproduction and selection stochastic processes. The entropy introduced at
reproduction allows for creative innovation, while the selection processes induce learn-
ing constraints. Under appropriate conditions, after many generations (near) optimal
individuals are likely to emerge in the population.

The schemata theorem, arguably the most characteristic result of GP theory, shows
that, under appropriate conditions, the emerging optimal solutions naturally exhibit a
hierarchical modular organization. Such modules are known as genes, schemata or
building blocks, see Holland (1975), Langdon and Poli (2002), Reeves (1993), Simon



(1996) and Stern (2008b). In light of the Schemata theorem, it is easy to understand
that efficient crossover operators must be compatible with, preserve, favor, or even
induce the emerging modular structure. More efficient operators are less likely to break
down existing building blocks during reproduction, an unfortunate event known in the
literature as destructive crossover.

This paper presents a new crossover operator, named SASC or Self-Adaptive Semantic
Crossover. SASC is based on meta-control techniques designed to guide the random
selection of recombination points by a measure of semantic compatibility between the
portions of code being swapped. It is important to realize that SASC’s meta-control
system is not hard-wired or pre-defined. On the contrary, it is an emerging feature, co-
evolving with the population. The meta-control system is based on the history of each
individual in the population. However, the required historical information, accumulated
during the individual’s evolutionary line, is very limited. Hence, its implementation only
generates a minor computational overhead.

2. GENETIC PROGRAMMING IN FUNCTIONAL TREES

In this and the following sections, we deal with GP in the context of functional trees.
In this setting, the objective is to find the correct specification, the best functional form,
or just a good emulation of a complex target function. The only information available
about the target function is an input-output data-bank. An individual in the population is
represented as a tree, with atoms at the leaves representing constants or input variables,
and primitive operators at internal nodes. The root node output, at the top of the tree,
expresses the individual’s phenotype. Atoms and primitive operators are taken from
finite sets, A = {a1,a2, . . .} and OP = {op1,op2, . . .opp}. Each operator, opk, takes a
specific number of arguments, r(k), known as the arity of opk.

Figure 1 shows four individuals in the population of a GP trying to emulate the
target function, f (w,y,z) = y2 + wz/y, from the primitive set of expanded arithmetic
operators, OP = {+,−,×,/,∧}. Inputs at the leaves are represented in a square, and
operators at internal nodes or at the root are represented in a circle. Figure 1 also shows
a crossover, having the first two individuals as parents and the last two as children.
The recombination points in the parent trees are highlighted. Notice that the first parent
contains the component, partial solution or building block for the first term in the target
function, y2, while the second parent contains the building block for the second term,
wz/y. Since none of these interesting building blocks are preserved in the children, we
call this a destructive crossover. A child inherits its root node, and hence usually most
of its code, from the parent we call its mother, while from its father the child receives
a, usually smaller, sub-tree. Hence, in this example, parent 1 and 2 are, respectively,
mother and father of child 1, and father and mother of child 2.

Angeline (1996) proposed the SSAC - Selective Self-Adaptive Crossover - in order to
make destructive crossovers less likely. Standard crossover selects recombination points
in a parent tree with uniform distribution. In SSAC like crossovers, each node, n(i),
stores a meta-control variable, ρi, a real number bounded to the normalization constraint:
0 ≤ ρmin ≤ ρi ≤ ρmax. The probability of selecting node n(i) for recombination is
proportional to ρi. That is, the probability of choosing node n(i) as the recombination
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FIGURE 1. Figure 1: Example of destructive crossover

point in that tree is pi = ρi/∑ j ρ j.
After a crossover, nodes at the children carry along the meta-control variables they

had at the parents, and afterwards suffer the effect of random noise. For example, the
meta-control variable in node n(i) can be updated as ρ ′i = (1 + µi + σiε)ρi, where ε is
the standard Normal random variable, µi is a zero or positive drift, and σi is a positive
scale factor. All ρi are initialized at the minimum value, ρmin, and allowed to move
inside the normalization bounds. For details on Angeline’s original implementation, see
Angelinr (1996).

The intuition behind SSAC is that survivors in the GP competition process are well
adapted individuals, containing good building blocks. Moreover, successful breeders
must be able to give these building blocks intact to their children. At these breeders,
large meta-control variables should mark plausible building blocks, indicating good
recombination points to be used (again) in the future. Genotype codes and meta-control
variables should both co-evolve, facilitating the emergence, marking, and preservation
of good building blocks.

Before ending this section we make some additional comments about the schemata
theorem. As already mentioned in the introduction, it is in the light of the schemata the-
orem that we can understand why efficient crossover operators must be compatible with,
preserve, favor, or even induce the emerging modular structure. However, Holland’s
original theorem was stated for a very particular case, namely, genetic algorithms using
string coded programs. Schemata theories extend this fundamental result to genetic pro-
gramming using functional trees, see Langdon and Poli (2002). Hence, we must rely on
Rosca, Poli and Langdon’s results to keep our work on well founded theoretical ground.

3. THE SELF-ADAPTIVE SEMANTIC CROSSOVER

SASC descends from Angeline’s SSAC and SAMC operators, but it also incorporates
information concerning the sub-trees rooted at the nodes in possible recombination
points. The first information used for this purpose is captured through the notion of
similarity. (Sub)Trees A and B are phenotypically similar if their output, computed at
the records available on the data bank, agree within a specified tolerance.

We assume that two parents, father A and mother B, have been selected for crossover
according to the mating distributions used at the GP. SASC starts by using a first
heuristic procedure to define new meta-control variables, δi, at the nodes, n(i), of the



father, A. Let A(i) be the sub-tree of A rooted at n(i). For each sub-tree, A(i), the
procedure searches the mother, B, for sub-trees, B( j), that are similar to and also either
the same size or shorter than A(i). If such a short similar sub-tree is found, δi = ρmin.
Otherwise, δi = ρi. Finally, the recombination point at the father is randomly selected
with probabilities pi = δi/∑ j δ j. The intuition behind the first heuristic procedure is to
stimulate innovation, that is, to only chose recombination points at the father that, by the
crossover operation, are able to contribute with an innovative component, A(i), that is
not already present in the mother or, at least, to contribute with a similar component that
is more efficiently coded.

After the recombination point at the father, n(i) - root of sub-tree A(i), has been
chosen, a second heuristic procedure selects the recombination point at the mother, m( j)
- root of sub-tree B( j). Again, new meta-control variables, λ j are defined for the nodes
m( j), followed by a random selection with probabilities p j = λi/∑ j λ j. The idea behind
this second heuristic procedure is to stimulate the crossover to exchange sub-trees, A(i)
and B( j), with analogous meanings, compatible semantics, similar interpretations, etc.
This heuristic procedure draws inspiration from biology, where analogy is defined as
compatibility in function but not necessarily in structure or evolutionary origin.

The formal expression used to evaluate the meta-control variables at the second
heuristic procedure is: λ j = w0 +∑

D
d=1wdCk(A(i),B( j)). The index d spans D semantic

dimensions or factors. The positive weights, wd , add to one, and the semantic compati-
bility measures, Ck, are normalized in the interval [0,1].

The functional form of the compatibility measures, Ck( ), are completely dependent
on insights and interpretations for the actual problem being solved. In the case of the
arithmetic functional tree presented at this section, the analogy between two sub-trees
could be established, for example, simply by the fraction of input variables they share in
common. In this case, blocks coding y2 e 2y would have compatibility measure equal to
1, while the blocks coding y2 and wz/y would have compatibility measure equal to 1/3.

After a SASC crossover, the children’s nodes carry along the meta-control variables,
ρi, they had at the parents, and are afterwards updated by a random perturbation. We
used a standard Normal multiplicative noise with drift µi and scale factor σi, that is,
ρ ′i = (1 + µi + σiε)ρi. At practical implementations we always used a positive drift at
the recombination points, and a null drifts elsewhere. Sometimes we also used scale
factors, σi, that decrease with the height of node n(i). For instance, take σi inversely
proportional to the depth of sub-tree A(i). Using larger scale factors at lower nodes can
help to induce the emergence of smaller building-blocks, that are more efficiently coded,
and less prone to destructive crossover.

4. IMPLEMENTATION AND CASE STUDY

Our implementation of SASC methods is based on ECJ, an open-source evolutionary
computing system written in Java. ECJ is developed at George Mason University’s
ECLab Evolutionary Computation Laboratory. ECJ maintains a well organized object-
oriented design. Its powerful classes and methods proved to be very flexible, and could
be easily extended to our purposes. The SASC package, developed by the first author, ex-
tends some ECJ classes in order to easily implement the methods under discussion. Most



of the new code is concentrated at the class SASCNode, used to represent functional trees
evolving by SASC GP. This class also includes abstract methods that facilitate the im-
plementation of semantic compatibility measures, specified at sub-classes implemented
for each specific problem.

Finally, we should mention that ECJ supports distributed computing, specifying the
desired number of parallel threads as a parameter to be set according to the available
resources offered by the hardware and operating system. This feature was especially
useful for multi-population scenarios, to be described in the next section, where SASC
GP had an excellent performance.

SASC operator was compared to standard crossover operators at a test case problem
concerning the replication of an hypothetical investment fund. Although hypothetical,
this problem has strong similarities with real problems regarding the construction of
synthetic portfolios faced by the first author in his professional activities. Portfolios of
this kind are typical of correlation trade, since its return statistics are sensitive to the
correlation matrix for the returns of various components in a basket. Such portfolios can
be easily synthesized using readily available exotic derivatives like rainbow options, that
is, calls or puts on the best or worst of several underlying assets.

Lemon, the hypothetic fund, is based on stocks negotiated at BM&F-Bovespa - São
Paulo Securities, Commodities and Futures Exchange. Lemon’s daily log-return, rt , is
given by the log-return average of four components, rk

t , corresponding to key economic
sectors. These are, using standard BM&F-Bovespa equity codes: r1 = min(BBDC4,
PETR4, BBAS3), r2 = min(LAME4, LREN3, NETC4), r3 = max(TNLP4, TCLS4,
VIVO4) and r4 = max(CYRE3, ALLL11, GFSA4). These components represent four
key economic sectors: Telecommunications, construction and transports, finance and
cyclic consumption.

An asset manager wants to synthesize a second fund, Lime, with the objective of
tracking fund Lemon. However, only the daily share values of fund Lemon are avail-
able, not its operational rules. Of course, GP was the method chosen to find the best
specification of the synthetic portfolio Lime. The atoms for this problem are daily log-
returns, from 04-Nov-2008 to 01-Apr-2009, of the 63 most liquid stocks negotiated at
BM&F-Bovespa. These include all the stocks used to specify fund Lemon. The prim-
itive operators are {max,min,mean}, the maximum, minimum and mean value of two
real numbers.

The fitness function for this problem is the mean squared error between the synthetic
and the target log-returns, plus a regularization term adding, for each node, n(i), a
penalty π(i). For the application at hand, we used π(i) = ch(i)2h(i)−1, where h(i) is the
height of node n(i). For the example at hand, we used ch(i) = 1 at the root node and
zero otherwise. The purpose of regularization term is to avoid needless complexity and
over-fitting in the final model, see Cherkaasky and Mulier (1998).

In the GP experiments, we used two distinct population scenarios. Scenario 1: One
population of 300 individuals evolving over 700 generations, Scenario 2: 8 populations
of 300 individuals each, that first evolve in isolation over 400 generations and are then
allowed to merge and evolve for 100 generations more. In both scenarios the GP is
allowed to warm-up using the standard crossover, 200 generations for scenario 1 and
100 for scenario 2, and then switch to (or not) to SASC crossover. SASC’s semantic



compatibility function is the Boolean indicator of having at least one atom in common.
The actual GP implementation uses a dual tree representation for each individual

in the population, as suggested in Angeline (1996) original paper. The first tree only
stores the genotype used to code the function expressed by the individual’s phenotype.
Meanwhile, the second tree only stores meta-control variables.

GP meta-parameters were set as follows: mutation rate was set at 5%, using a 3-
round tournament selection process. Crossover rate was set at 95%, using a 7-round
high pressure / 3-round low pressure combination of father / mother selection, see Stern
(1998b). ρmin = 0.001, ρmax = 0.999, w0 = 0.01, w1 = 0.99, σi = 0.4 for h(i) = 2 and
approximately inversely proportional to the node height for h(i) > 2. Further details
about the algorithm fine tuning can be seen at the source code documentation, available
from the first author.

Figure 2 compares the GP results using standard and SASC crossover operators. The
use of Angeline’s original SSAC instead of the standard crossover operator had only a
minor impact in GP performance, and is not shown in the figure. This figure displays
95% confidence intervals for the mean square error of the best solution found over 50
independent GP runs.
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FIGURE 2. Figure 2: Confidence interval for best solution MSE by generation.

Figure 3 shows the best empirical solution found by SASC GP. The figure also
highlights the building blocks encapsulated by meta-control variables larger than a
critical threshold. This solution replicates very well the target fund. Notice that each
of the highlighted building blocks corresponds to one of the key economic sectors used
to define the operation rules of fund Lemon.

Each best solution found at a batch of 50 SASC GP experiments under scenarios 1
and 2 was categorized according to the number of key economic sectors represented by
a constituent building block. Table 1 displays the average mean square error of each
category. This table shows that better adjusted functional trees have more of the four
key economic sectors present as a building block. This conclusion may be obvious to
someone knowing the operating rules of Lemon, the original target fund. However,
it is remarkable that the best solutions offered by SASC GP for the replication fund
Lime, synthesized only from input-output data, are able to capture so well the logic and
semantics of fund Lemon.
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FIGURE 3. Figure 3: Emerging building-blocks in near-optimal solution

5. CONCLUSIONS AND FINAL REMARKS

From Figure 2, we can conclude that, at least for the test case at hand, GP has a much
better performance when using SASC than the standard crossover operator. At scenario 2
the best empirical solution, shown at Figure 3, is found repeatedly. At scenario 1, SASC
not only achieves better results, but also seems to greatly accelerate the finding of good
solutions. These effects are even stronger at scenario 2, where a second acceleration
effect is clear just after the populations merge. At this final stage, one can observe that the
best solution are formed purging spurious building blocks and combining good building
blocks that had emerged at the previously isolated populations. It is as if SASC were
able to isolate, identify, and collect good building blocks.

The explanatory power of the emergent building blocks, that is, on one hand, how
well they capture the semantics of the system under study and, on the other hand,
how much they contribute to its prediction accuracy, is made even clearer by Table 1.
Accordingly, Figure 3 suggests that SASC GP can also provide an implicit method of
semantic analysis. That is, at least in our case study, the internal operational logic and
the semantics of the target system is adequately represented by the building blocks of

TABLE 1. Number of key sectors represented by building blocks

Category Scenario 1 MSE Scenario 2 MSE

One key sector 14% 12.3 10% 8.9
Two key sectors 16% 8.1 30% 1.9
Three key sectors 8% 9.3 38% 1.4
Four key sectors 0% - 4% 0.1
Other (spurious) blocks 62% 21.7 18% 10.2



the best solutions synthesized by SASC GP. Nevetheless, it is important to keep in mind
that these logical and semantic relations were not externally imposed or driven, but are
truly emergent properties co-evolving with the GP solutions.

Future Research: In future research we plan to investigate techniques of self-adaptive
meta-control using abstract type node labels as auxiliary control variables. Transforma-
tion rules for label mutation and label compatibility rules for permissible recombination
points should be able to induce building block formation and encapsulation, and also
be able to foster emergent semantic interpretations, even in problems lacking natural
heuristics for explicit semantic compatibility measures.
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