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Abstract. Burg entropy concepts are here introduced in the field of wide Markov chains. These
random sequences are the second-order equivalent of Markov chains: their future evolution, in
terms of second order properties, conditional on the past and present, depends only on the present.
Either periodically correlated or multivariate stationary, they can be characterized in terms of
autoregressive models of order one.
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INTRODUCTION

The future evolution of a (strong) Markov chain conditional to its past and present is
known to depend only on its present. In terms of second order (that is L2) properties, it
is sufficient to consider the projection onto the linear subspaces spanned by the sequence,
which leads to the notion of wide sense Markov chains. Specifically, a square integrable
random sequence is a wide Markov (WM) chain if its second-order projection (that is in
the sense of the L2-norm) onto its past and present depends only on its present.

A square integrable scalar process is periodically correlated if its covariance function
is periodic. A multivariate square integrable process is multivariate (weakly) stationary
if its covariance function is invariant by translation of time. A one-to-one relationship ex-
ists between periodically correlated (PC) sequences and multivariate stationnary (MS)
sequences; this duality allows one to study jointly the second-order structure of peri-
odically correlated wide Markov (PCWM) chains and of multivariate stationary wide
Markov (MSWM) chains, in terms of covariance, correlation and reflection coefficients.
The definitive characterization of the subclass of MSWM chains dual to PCWM chains
is given in Castro and Girardin [4] in terms of autoregressive processes of order one,
using generalized reflection coefficients matrices introduced in Castro and Girardin [3].

The convenient entropy for studying weakly stationary random sequences is known
to be Burg entropy applied to spectral densities. The maximum of entropy among
multivariate stationary sequences is proven in Castro and Girardin [3] to be obtained
for a multivariate autoregressive process (MAR). Burg entropy of WM chains will be
determined explicitly below. The maximum of entropy is then discussed under various
constraints. A closed form expression for the variance of the innovation of the studied
sequence also derives from the computation of Burg entropy.

The paper is organized as follows. Necessary basics on WM chains, MS random
sequences and PC scalar random sequences are given in the next section, with a focus



on their duality. In the following section, autoregressive models are defined, with a
particular attention given to their spectral densities, and the WM chains are characterized
in terms of autoregressive processes of order one. Burg entropy is applied to WM chains
in the last section, with explicit computation.

MULTIVARIATE STATIONARY AND PERIODICALLY
CORRELATED WIDE MARKOV CHAINS

Let (Ω,F ,P) be a probability space. Let L2(Ω) denote as usual the space of zero-mean
second order random variables. Let L2

d(Ω) for d ∈ N∗ denote the space of all d-variate
random variables V = (V1, . . . ,Vd) such that Vi ∈ L2(Ω), equipped with the Euclidean
norm and inner product. A real-valued d-variate sequence Z = (Z(n))n∈Z is a second-
order multivariate stochastic process if Z(n) ∈ L2

d(Ω) for all n ∈ Z. A random sequence
Z is a wide sense Markov chain if (with probability 1)

Ê[(Z(nk))|Z(m),n1 ≤ m≤ nk−1] = Ê[Z(nk)|Z(nk−1)], n1 < · · ·< nk, (1)

where Ê[ · | Z(m),k ≤ m ≤ l] denotes the (second-order) projection onto the linear
subspace Sp{Z(n) : k ≤ n≤ l} of L2

d(Ω). Note that if Z is Gaussian, then it is a Markov
chain in the usual sense.

The coefficients of the covariance matrices RZ(m,n) of Z are defined as

RZ(m,n)kl = E[Zk(m)Zl(n)], m,n ∈ Z, 0≤ k, l ≤ d−1;

thus the covariance function RZ is a positive definite matrix-valued function of two
variables. For a so-called basic process, these coefficients are never null. The process
is stationary (in the weak or second-order sense) if

RZ(m,n) = RZ(n−m), m,n ∈ Z,

for a positive definite matrix valued-function RZ of one variable.
A straightforward application of the definition shows that a second order scalar ran-

dom sequence is a WM chain if and only if its covariance function RZ is triangular, that
is satisfies

RZ(n,n)RZ(m,u) = RZ(m,n)RZ(n,u), m≤ n≤ u ∈ Z.

The correlation function ρZ of Z is defined by

ρZ(m,n) = RZ(m,n)RZ(m,m)−1, m,n ∈ Z.

If the process is stationary, then ρZ(m,n) = RZ(n−m)RZ(0)−1. A triangular character-
ization of WM chains in terms of correlations also exists, due to Doob [2] for the scalar
continuous-time case and to Beutler [1] for the multivariate case. It applies directly to
WM chains. As shown in Castro and Girardin [4], properties of the reflection coefficients
can also be used to characterize WM chains.



A scalar second order process Y is periodically correlated if its covariance function
is periodic, that is if some d ∈ N∗ exists such that EY (n + d)Y (m + d) = EY (n)Y (m),
for n,m ∈ Z. Theoretically, d ≥ 1, even if, in all meaningful applications, d > 1; see
Franses [5] for application in econometrics. A one-to-one relationship is defined between
the class of scalar non stationary PC processes Y and a subclass of MS processes
Z by setting Zk(n) = Y (k + dn) for the k-th component of the d-variate process Z.
Gladyshev [6] proved that Y is periodically correlated if and only if Z is weakly
stationary. For m,n ∈ Z and 0≤ k, l < d, we have

RY (k +dn, l) = E[Y (k +dn)Y (l)] = E[Y (k +d(n+m))Y (l +dm)]
= EZk(n)Zl(0) = RZ(m,m+n)kl = RZ(n)kl.

Nematohellahi and Soltani [10] gave an explicit expression for the coefficients of the
covariance function of the PCWM chains, namely

RY (k +dn, l) = g̃(d−1)n g̃(k−1)
g̃(l−1)]

RY (l, l), 0≤ k, l < d,

where

g̃(−1) = 1 and g̃( j) =
j

∏
i=0

RY (i, i)
RY (i, i+1)

, j ∈ N. (2)

This yields the next characterization of these sequences in terms of covariance matrices,
proven to hold in Castro and Girardin [4].

Theorem 1 There is a one-to-one correspondence between the PCWM chains and the
MSWM chains such that R(n) = cnAB′, for the constant c ∈ R and column vectors
A = (ai) and B = (bi) defined as follows:

c = g̃(d−1), ai = g̃(i−1) and bi =
RY (i, i)
g̃(i−1)

, 0≤ i≤ d−1. (3)

In the following, we will refer to these special MSWM chains as to MSD chains.

AUTOREGRESSIVE MODELS AND SPECTRAL DENSITY

An MS process Z is an autoregressive process, or MAR(N), if it has a representation

N

∑
k=0

A(k)Z(n− k) = ε(n), n ∈ Z, (4)

where the coefficients A(k) are d×d matrices, A(0) is a unit lower triangular matrix and
ε is a multivariate white noise process with diagonal covariance matrix Σ. Similarly, a PC
process Y with period d is a periodic autoregressive process, or PAR(d,(N1, . . . ,Nd)), if
it has a representation

Y (n)+
Nn

∑
j=1

αn( j)Y (n− j) = w(n), n ∈ Z,



where Nn = Nn+d , αn( j) = αn+d( j) and w is a white noise process with periodic variance
σ2

n = σ2
n+d , for n ∈ Z. This relation can be written

Y (k + ld)+
Nk

∑
j=1

αk( j)Y (k +d(l− j)) = w(k + ld), l ∈ Z, k = 0, . . . ,d−1,

obviously related to Relation (4) so that Y is a PAR(d,(N1, . . . ,Nd)) if and only if the
dual Z is a MAR(N) with N = maxk [(Nk− k)/d]+1, where [· ] denotes the integer part
of a real number.

The following two structural characterizations of PCWM and MSWM chains in terms
of autoregressive models are essential. They are proven to hold in Castro and Girardin [4]
by using reflection coefficients.

Theorem 2 The class of MSWM chains is exactly the class of stationary MAR(1) pro-
cesses, with general representation

A(0)Z(n)+A(1)Z(n−1) = ε(n), n ∈ Z.

They are dual with the PAR(d,(N0, . . . ,Nd−1)) processes with 1≤ Ni ≤ 2d− i.
The class of PCWM chains is exactly the class of PAR(d,(1, . . . ,1)) processes, with

representation
Y (n)+αnY (n−1) = w(n), n ∈ Z, (5)

with αn = αn+d . The class of their dual MSD chains is exactly the class of stationary
MAR(1) processes Z, with representation

A(0)Z(n)+A(1)Z(n−1) = ε(n), n ∈ Z, (6)

where ε is a white noise with diagonal covariance matrix Σ, the matrix A(0) is a unit
upper triangular matrix with only 2d−1 non zero entries,

A(0)l,l = 1, 0≤ l ≤ d−1, and A(0)l,l−1 =−ρY(l−1, l), 1≤ l ≤ d−1, (7)

and the matrix A(1) has a unique non zero entry,

A(1)0,d−1 =−ρY(d−1,d). (8)

Exemple 1 The MAR(1) process Z with representation 1 0 0 0
−0.1 1 0 0

0 −0.2 1 0
0 0 −0.3 1

Z(n)+

 0 0 0 −0.4
0 0 0 0
0 0 0 0
0 0 0 0

Z(n−1) =

 w(4n)
w(4n+1)
w(4n+2)
w(4n+3)


is an MSD process dual to the PAR(2,(1,1,1,1)) process Y with representation

Y (4n) − 0.4Y (4n−1) = w(4n)
Y (4n+1) − 0.1Y (4n) = w(4n+1)
Y (4n+2) − 0.2Y (4n+1) = w(4n+2)
Y (4n+3) − 0.3Y (4n+2) = w(4n+3).



Both Z and Y are WM chains. �

The spectral density H = (hkl) of an MS sequence Z is a positive-definite Hermitian
d×d-matrix valued function such that

R(n)kl =
∫
[0,2π]

hkl(λ )einλ dλ , n ∈ Z, 0≤ k, l ≤ d−1.

The cross-specrtral densities hkl for k 6= l are genrally complex-valued, while the auto-
spectral densities hkk are real-valued and nonnegative; see Priestley [11] for examples
and more on spectral analysis of multivariate processes. The matrix function H can
be considered as a spectral density also for the dual PC sequence Y which, being non
stationary, does not have a natural spectral density.

If Z is an MSD chain, then, by Theorem 2, Z is a MAR(1) process with representation
(6). Set

P(λ ) = A(0)+A(1)eikλ , λ ∈ [0,2π].

If the polynomial DetP has all its zeros outside the unit circle, the spectral density of Z
is well defined and takes the form

H(λ ) = P−1(λ )Σ[P−1(λ )]∗, (9)

where Σ is the diagonal covariance matrix of ε and the star denotes conjugate and trans-
pose; see Troutman [12] for details. Reciprocally, an MS sequence with spectral density
given by (9) is a MAR sequence with representation (6); see Castro and Girardin [3]
for details. The matrix structure of the spectral density of any wide Markov chain is
thus completely known. For MSD (or PCWM) chains, due to the form of P induced by
relations (7) and (8), this structure is particularly simple.

Nematollahi and Soltani [10] have specifically studied the spectral density of an MSD
sequence through its coefficients, proving straightforwardly from (9) that

h jk(λ ) =
α jkeiλ +β jk

|1+ g̃(d−1)eiλ |2
, (10)

where g̃ is defined in (2) and

α jk = g̃(d−1)
[

g̃(k−1)RY( j, j)
g̃( j−1)

− g̃( j−1)RY(k,k)]
g̃(k−1)

]
,

β jk =
g̃( j−1)RY(k,k)

g̃(k−1)
− g̃(k−1)RY( j, j)g̃(d−1)2

g̃( j−1)
.

WIDE MARKOV CHAINS AND ENTROPY

The classical Burg entropy can be applied to MS sequences Z, and hence by duality to
PC sequences Y, under the form IZ = IY = I [H], where

I [H] =
∫
[0,2π]

lnDetH(λ )dλ ,



with I [H] =−∞ if the integral is not defined.
For WM chains, this entropy takes the following simple form.

Proposition 1 The Burg entropy of an MSD chain or PCWM chain is

IZ = IY = d ln
(

b2−a2

a2πb2π−1

)
, (11)

where

b =
d−1

∏
i=0

R(i, i) and a =
d−1

∏
i=0

R(i+1, i). (12)

Note that a < b.
Proof Indeed, since H(λ ) is positive-definite for any λ , we know that

I (Z) =
∫

lnDetH(λ )dλ =
∫

Tr[lnH(λ )]dλ ,

where Tr denote the trace operator. Since by definition g̃(d−1) = a/b in (3), we deduce
from (10) that

I (Z) =
d−1

∑
k=0

∫
[0,2π]

lnhkk(λ )dλ =
d−1

∑
k=0

∫
[0,2π]

ln
R(k,k)(1− g̃(d−1)2)
|1− g̃(d−1)eiλ |2

dλ

=
d−1

∑
k=0

lnR(k,k)

+d
∫
[0,2π]

ln(1− g̃(d−1)2)dλ −d
∫
[0,2π]

ln |1− g̃(d−1)eiλ |2dλ

= lnb+d ln
(

1− a2

b2

)
−d

∫
[0,2π]

ln
(

1−2
a
b

cosλ +
a2

b2

)
dλ ,

and the result follows using the change of variable cosλ = (1− t2)/(1+ t2). �

The entropy tends to infinity when either a or b tends to zero. When b = 0, the variance
of Y (i) is null for some i, meaning that Y (i) is deterministic. When a = 0, the covariance
of Y (i) and Y (i + 1) is null for some i; due to (5), VarY (i + 1) = −αiRY (i, i + 1), and
hence b = 0 and the variable Y (i) is deterministic.

If both RZ(0) and RZ(1) (that is RY (k, l) and RY (k +1, l) for 0≤ k, l < d) are fixed,
the maximum of Burg entropy among general MS sequences is shown to exist and to
be obtained for a MAR(1) process in Theorem 3 of Castro and Girardin [3] by using
spectral densities arguments. Since RZ(0) and RZ(1) characterize a unique MSWM
chain, which is a MAR(1) process with representation (5) and spectral density given by
(10), the maximum entropy among MS sequences is obtained for this MAR(1) process
whose dual PCWM chain is a PAR(d,(1, . . . ,1)) process with representation (6).

If only RZ(0) (that is RY (k, l) for 0 ≤ k, l < d) is fixed, we can study entropy
among WM chains. Clearly, due to (11), the maximum entropy is obtained for all MSD



sequences such that the covariance between two successive steps is null for al least one
coordinate, that is such that Y (i) is deterministic for some 0≤ i < d.

For any random sequence Z, let en denote the error of the best linear prediction of
Z(t) knowing the finite past Z(t−1), . . . ,Z(t−n). The innovation process e of Z is the
error of the best linear prediction of Z(t) knowing the infinite past. It represents the
information on Z(n) brought by the knowledge of the whole past. Let σ2

n denote the
variance of en and σ2 the variance of innovation, that is the variance of the white noise
e.

Proposition 2 The variance of innovation of any WM chain is

σ
2 =

[
b2−a2

a2πb2π−1

]d

= σ
2
n , n ∈ Z,

where a and b are defined in (12).

Proof Precisely,

σ
2
n = Var

(
Z(m)− Ê[Z(m) | Z(m−1), . . . ,Z(m−n)]

)
.

On the one hand, due to projection properties, σ2
n converges to σ2 when n tends to

infinity. On the other hand, for WM chains, due to (1), σ2
n = σ2

1 .
Finally, Helson and Lowdenslager [7] proved that σ2 = expI (Z). The result follows

from Proposition 1. �

When a = b, the variance of innovation is minimum, equal to zero, and the entropy is
infinite. This happens especially when R(i, i + 1) = R(i, i) for all i; then, in representa-
tion (5), we get αn =−1, and hence Y (n) = Y (n−1)+w(n) for any n ∈ Z.
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