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Abstract. This paper deals with simple versus composite hypothesis testing under Bayesian and
frequentist settings. The Posterior distribution of the Likelihood Ratio (PLR) concept is proposed in
[1] for significance testing. The PLR is shown to be equal to 1 minus the p-value in a simple case.
The PLR is used in [2] in order to calibrate p-values, Fractional Bayes Factors (FBF) and others.
Dempster’s equivalence result is slightly extended by adding a nuisance parameter in the test.

On the other hand, in [3] the p-values and the posterior probability of the null hypothesis
Pr(Hp|x) (seen as a Bayesian measure of evidence against the null hypothesis) are shown to be
irreconcilable. Actually, as emphasized in [4], Pr(Hp|x) is a measure of accuracy of a test, not a
measure of evidence in a formal sense because it does not involve the likelihood ratio.

The PLR may give such a measure of evidence and be related to a natural p-value. In this
presentation, in a classical invariance framework the PLR with inner threshold 1 will be shown
to be equal to 1 minus a p-value where the test statistics is the likelihood, weighted by a term that
accounts for some volume distorsion effect.

Other analytical properties of the PLR will be proved in more general settings. The minimum of
its support is equal to the Generalized Likelihood Ratio if Hy is nested in H; and its moments are
directly related to the (F)BF for a proper prior. Its relation to credible domains is also studied.

Practical issues will also be considered. The PLR can be implemented using a simple Monte
Carlo Markov Chain and will be applied to extrasolar planet detection using direct imaging.
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1. INTRODUCTION

Simple versus composite hypothesis testing is a general statistical issue in parametric
modeling. It consists for a given dataset x in choosing among the hypotheses

Hp:06=6y ; H :0=6; (1)

with 8y pre-assigned and 0; # 6y but unknown. Under the classical Bayesian approach
adopted here, it means that we use the singular prior 6(6 — 6y) on Hy and we can choose
a continuous prior 7(6), 6 € ®; on H;. This non regular prior, that may appear necessary
for hypothesis testing, rises difficulties for classical Bayesian inference. We assume that
the data model p(x|0) has the same expression under Hy and H; and does not depend
on other parameters than 6.



This paper tackles this decision problem using the Posterior distribution of the Like-
lihood Ratio LR = p(x|6y) p(x|6)~! first advocated as such by [1].
It is organized as follows:

« Section 2 presents standard tests and measures of evidence.

 Section 3 introduces the Posterior distribution of the LR (PLR) and shows it is
equal to 1 minus a p-value in a general invariant case.

« Section 4 gives analytical results of the PLR as a distribution (moments, support)
and presents it as the posterior probability of a domain.

« Section 5 presents a realistic application of the PLR.

2. CLASSICAL TESTS AND MEASURES OF EVIDENCE

2.1. Classical Bayesian tests

In addition to the prior 7 used to define the alternative hypothesis in the test Eq. (1),
a prior information Pr(Hp) may be used to define the Posterior Odds Ratio by

Pr(Ho|x)

POR(x) = Pr(H, )

2)

Bayesian hypothesis testing often consists in giving the POR, and thresholding it if
a binary decision is required: Reject Hy if POR(x) < {. The POR equals the classical
Bayes Factor (BF) [5]

BF(X) - p(X|H0) _ p(x|00> (3)

~ plxH) [ p(x]6)m(6)dO

up to the multiplicative prior odds ratio Pr(Ho)Pr(H;)~!. The BF is also classicaly used
for binary decision and its threshold can be interpreted on its own grounds [5].

An important issue of the POR and the BF is that they are not uniquely defined if
the prior () is improper, ie if [ 7(0)d6 = o, even though the posterior distribution
7*(0|x) is proper. Partial Bayes Factors avoid this difficulty. Among them, the Fractional
Bayes Factor FBF(x,b), b € (0, 1) has been proposed in [6] and is defined by:

 p(x|6y) p(x60)> \'
FBE(x.0) = T (l6)n(6)a6 (fp<x|e>bn<e>de> @

2.2. Frequentist and Bayesian measures of ‘“‘evidence”

Hypothesis test practitioners in general expect some “predata” information about the
operating characteristics of the test. In particular, the significance level of a test, or
Probability of False Alarm (PFA), is defined by PFA = Pr(Reject Hy|Hyp). To calibrate a
test by fixing the PFA (e.g. at 5%) is attributed to Neyman-Pearson [7].



Some “postdata” measure of the reliability of a decision is in general also expected.
We use the expression “measure of evidence of an hypothesis” like in standard analyses
[3, 8]. The most classical frequentist post-data measure about the significance of a
decision is the p-value, defined as the lowest PFA for which Hy would be rejected. For a
test of the form “Reject Hy if T'(x) < {7, the p-value is in general [7] given by:

Pva{T (x)} = Pr{T (y) < T (x)[Ho, x} )

It can be easily verified that the distribution of the p-value under Hy is uniform in (0, 1)
if T(X) is a continuous random variable. In the Bayesian frame, apart from the Bayesian
p-value [9], Pr(Hp|x) is in general considered as the only Bayesian measure of evidence.
In the simple vs composite test, the frequentist p-value and Pr(Hp|x) are shown to be
irreconcilable in the two-sided test: whatever the prior chosen, Pr(Hg|x) > pya [3].

However, in decision theory, Pr(Hp|x) is derived from the estimation problem of the
indicator function /;)1(8), defined by I, (60) = 1 and I(4,)(6) = 0 if 6 # 6y. Under
the binary cost function, the Bayes estimate of I;g}(6) consists in thresholding Pr(Hy|x)
and its Bayes risk is equal to Pr(Hg|x) or 1 —Pr(Hg|x). Under the quadratic loss function,
the Bayes estimate is equal to Pr(Hg|x). Furthermore, [10, 11] claim that for hypothesis
testing a measure of evidence should involve the Likelihood Ratio (LR). Consequently,
[4] emphasizes that in a formal sense Pr(Hg|x) measures the accuracy of a test, not the
evidence of an hypothesis.

3. PLR AS A MEASURE OF EVIDENCE

3.1. Posterior distribution of the Likelihood Ratio (PLR), review

In the simple vs simple hypothesis test, the Likelihood Ratio (LR) maximizes the
Probability of good Detection for a given PFA. Its use as a measure of evidence is
straightforward since the parameters under both hypotheses are known.

On the contrary, in the simple vs composite hypothesis test (1), LR(x, 0) is defined by

_ p(xl6y)
p(x[0)

and the parameter 6 under the alternative hypothesis has to be accounted for. A. Demp-
ster proposed in [1] not to integrate LR(x,0) over 6 but to give the probability that
LR(x, 0) is lower than some threshold. When the observed dataset x is the realization
of a random process with distribution p(x|0) relying on a fixed parameter 6 for the
experiment performed and under study, instead of comparing p(x|6p) to | p(x|0)x(6),
he advocates to compare “apples to apples” comparing p(x|6p) to p(x|0). To account
for the other random process, namely 6 unknown and taking different values on the set
of experiments, a cumulative probability can be computed instead of an expectation as
done with the BF (see later).

This Posterior cumulative distribution of the Likelihood Ratio under H; is noted
PLR(x). For a given dataset x, a binary test relying on PLR(x) consists in rejecting

LR(x,0)

(6)



Hy if the posterior probability that the observed data are “much more” likely under H;
with parameter 0 than Hg is “high enough™:

Reject Hy if PLR(x,{) > p (7)
with  PLR(x,{) = Pr{LR(x,0) < {|x} (8)

The right side of Fig. 1 illustrates the two decision cases: Hy rejected and Hg accepted.

Then, the PLR has only been studied as such by M. Aitkin in 1997 [2, 12] and 2005
[13]. According to Dempster and Aitkin, their fundamental results are related to the
result found in [1]: the PLR is equal to 1 minus the standard p-value in a normal case
with a flat prior when studying the location parameter. Aitkin generalized this result
adding a nuisance parameter in the mean, studying asymptotically any density etc, but
all generalizations still involved somehow the normal density and its mean.

Note that the PLR is equal to the e-value of the Full Bayesian Significance Test (re-
cently studied by [14]) in the singular case and for a reference prior equal to 7. There-
fore, the PLR benefits from some properties derived for the e-value and reciprocally
some properties derived here can be extended to the e-value.

3.2. Invariant case: PLR =1 - p-val

Pr(Hp|x) is shown to be irreconcilable with a p-value under general cases [3]. In
contrast, the PLR can be shown to be equal to 1 minus a p-value in an invariant setting.

This result generalizes the one of [1, 2]: the likelihood has to belong to an invariant
family, the flat prior has to be replaced by the right Haar prior and in the p-value the
likelihood is weighted by a modulus.

Invariance is a central framework to unify frequentist, Fisherian pivotal and Bayesian
paradigms [15]. See a discussion of the novelty of the result in Sec. 4.2.2. Below are
some of the more simple definitions and hypotheses involved in such a result.

Definition 1 Ler o = {f(.|0),0 € O} a family of densities wrt a measure W on 2
uniquely determined by 0. It is said to be invariant under the transformation group ¢ if
Y = g(X) has density f(.|0*) € Fo if X has density f(.|0) € Fg. We define G as the
set of all functions g induced by the group G with 0* = g(0). 9 is a group.

In Bayesian models, it is often required to define a “non-informative” prior related
to some specific property [16]. In particular, model invariance under a group should be
accounted for using the right Haar prior. It is in general improper.

Definition 2 (Haar measure) A right invariant Haar measure H" on a group 9 is a
measure which, for all measurable functions K with compact support on G satisfies

[g:c(g)Hf(dg): é k(gg0)H'(dg) Vgo €Y

A left invariant Haar measure H' is defined replacing ggo by gog.



We assume that the function ¢g : 4 — O, ¢g(g) = g(0) is isomorphic for all 8. The
prior measure induced by H" is defined for any a € @ by Pr(8 € A) = H' (¢, 'A) VA C @.
The measure @ on 2" is here simply assumed to be induced by H” in the same way.

The statistics involved in the p-value is the likelihood weighted by the modulus of ¢.

Definition 3 The modulus of 4 is the function A defined on 4 to (0,e) which satisfies

| e ') = Algo) [ ()t (dg) Vg0

Theorem 1 Let %o ={f(.|0),0 € O} be a family of probability densities wrt a measure
won Z'. Assume that:

1. g is invariant under the group of transformations 4.

2. ¢g and ¢y defined above are bijective. 2" and ® are isomorphic.
3. The prior measure on © is the measure induced by H" from Q.
4. The measure 1L on X is the measure induced by H" from ¢.

Then the PLR defined in Eq. (8) can be expressed as the frequentist integral:

£(x]60) f(y[60) . ranyce X
(0 (x)) <¢cl<y>>’H°’} forame e v

The proof of this theorem is available in [17] and its originality is discussed in Sec. 4.2.2.
In the Euclidian differentiable case, A can be replaced by a Jacobian [16].

Setting £ = 1 in Eq. (9) leads directly to the following corollary where the second
equality follows from the uniform distribution of the p-value under Hy.

PLR(x,{) :Pr{A S

Corollary 1 Under the same hypotheses as theorem 1

PLR(x,l):l—pml{f(f—W} (10)
Age (x))
Consequently, the PFA of the test (7) for { = 1 equals 1 — p.

The assumption of an isomorphism between .2~ and O is restrictive. This constraint is
relaxed considering a family of densities where the invariance is defined on 7(X) € .7,
a sufficient statistics for 0, such that .7, ¥, ® and 4 are isomorphic. Then, an extension
of the proof of theorem 1 leads to (9,10) where the statistics used in the p-value is now
£:(7|60)/A(¢ " (7)) where £;(7|6p) is the marginal distribution of 7(X) under Hy.

4. OTHER PROPERTIES AND INTERPRETATIONS OF THE PLR

4.1. Moments and support of the PLR: relations to (F)BF and GLR

Proposition 1 If the prior 7 is proper, the posterior moments of the LR equal the FBF:

FBF(x,b) =E[LR(x,0)'’|x] VbheR (11)



In particular, BF(x) = FBF(x,0) is the posterior mean of the LR. This result, noted for
example by Newton and Raftery in 1994, is used and improved for MCMC [18].

The next results assume that the hypotheses are nested: 6y € Sup(7), eventually at the
edge. This case is of interest in many practical applications, like in Sec. 5.

Define the Generalized Likelihood Ratio (GLR) as LR (x, 8) evaluated at 6 = @y (x):

GLR(x) = LR (x, by (x)) = % (12)

Proposition 2 When 6y € Sup(7), the posterior density of the LR verifies:

* The minimum of its support is GLR(x): ming{{ : PLR(x,{) > 0} = GLR(x)
» Under regularity assumptions that get stronger as L (the length of 0) increases, the
function { — PLR(x,{) has an infinite derivative for { — GLR(x)™.

The first property is a direct consequence of Eq. (12). The proof of the second is more
delicate in the multivariate case. We show in [17] tha; if locally there exists & > L and
(ai,..,0q) € RL, such that for all 8 close enough to Oy (x)

L
GLR(x) < LR(x,0) < GLR(x) + Y a(6 — by (x))
(=1

then ¢ ! Pr(GLR(x) < LR(x,8) < GLR(x) + €|x) — o> when & — 0.
[llustrations of Prop. 1 and Prop. 2 are shown in Fig. 1.

4.2. PLR and credible domain

4.2.1. PLR test or posterior probability of a domain

Unlike Pr(Hp|x), PLR(x) equals the “observed credible level” of a domain C(x) C ©:

PLR(x)
with C(x)

Pr(0 € C(x)|x)
{6:LR(x,0) < ¢} (13)

For such a test, the strong post-experimental relationship between tests and credible
domains (see [16] for the definition) that was expected in [19] is straightforward. It is
similar to the well known pre-experimental equivalence: a domain C(x) is said to be a
1 — a confidence domain if Pr(6 € C(x)|0) > 1 — a V6. The equivalence 6 € C(x) < x €
R(0) for some rejection region R(6) at significance level PFA(6y) < a V6, implies a
pre-experimental equivalence of confidence interval and hypothesis test rejection region.

4.2.2. Stein theorem relating Bayesian and frequentist inferences

In the group invariant setting involved in Sec. 3.2, if a domain C(x) C © satisfies
gC(x) = C(g(x)) with gC(x) = {g6,0 € C(x)}, then a result from Stein (1965) states



that Pr(6 € C(x)|x) = a Vx and Pr(6 € C(x)|6) = a V6. See for example [16] or [20]
for complementary views of this result with simple sets of hypotheses.

However, C(x) is given by Eq. (13) for the PLR. Then, the domain invariance condi-
tion is only satisfied if {6} is invariant under ¢, i.e. §6) = 6 Vg € ¥. We study a case
incompatible with this assumption: 26y = 6, is impossible if ¢g used in theorem 1 is
bijective. This explains why when the integral over ® switches into an integral over 2~
an additional term, A(¢, ! (x)), appears in the domain of integration.

4.2.3. Interpretation perspectives

BF as a point estimate. The relationship etablished by the PLR between a test and
a credible domain might be of deep interest. The same way a point estimate may not
give enough information about a parameter, the same way BF(x) seen as the posterior
mean of LR(x, 6) may appear as an insufficient inference about it. As an uncertainty it
is possible to give the risk of the inference, but for point estimation confidence domains
are in general prefered. For testing purposes, the BF is in general thresholded, so that the
relevant confidence interval should be constrained to be one-sided. The PLR measures
this exact idea (see Fig. 1 for illustration).

“Post-data hypothesis”. When x is the realization of a random process whose dis-
tribution is p(.|0), it might make sense to somehow label x by 6. Reciprocally the pa-
rameter 6 of interest is the one that leads to x: we make an inference on “6(x)”. Instead
of partitioning ® to define hypotheses, ®|x would then be partitioned. Such a view re-
quires precautions but may lead to no incoherence. In this case, note that if for a given
x the function 6 — p(x|0) is bijective, 8 = 6y is equivalent to p(x|0) = p(x|6p), i.e.
Hy : 6 = 6y (for a given x) is equivalent to Ho(x) : p(x|0) = p(x|6y). However, the fact
that the density at x is equal to the density of x for the parameter 6p may be not the
satisfactory hypothesis to test. Instead we might want to test: “0 less likely i.e. more
surprising than 8y”: Ho(x) : p(x|6) < { p(x|60) In this case, Pr(H; (x)|x) = PLR(x,{ ).

S. PLR IMPLEMENTATION AND REALISTIC APPLICATION

An analytical computation of the PLR is complicated for realistic models, but its numer-
ical computation may be easy using a Monte Carlo Markov Chain (MCMC) algorithm:
1. generate {0l ~ 7*(8]x)} ; using a MCMC algorithm
2. compute the chain {LR(x, 6l7)}
3. compute the PLR (8) as the empirical cumulative distribution of the LR chain
4. if Hy is rejected, use the chain {6/} for estimation
The Markov chain {LR(x,0l/)} can also be used to compute the (F)BF using an
importance sampling procedure. Otherwise, see [18] for a better estimate.

This detection procedure is realistically applied to the detection of exoplanets from di-
rect imaging using the future VLT instrument SPHERE. Realistic astrophysical datasets



are simulated by the dedicated Software Package SPHERE [21]. A dataset x is simu-
lated under H; with a luminosity contrast of 10° between the star and the exoplanet and
another under Hy (no exoplanet). x consist in 2x20 images acquired simultaneously in
2 spectral channels and the 6 vector refers to the exoplanet intensity in the 2 channels.

A hierarchical Bayesian model dedicated to this context has been developed in [22].
The Markov chain {6l ~ *(6|x)} ; necessary to compute the test statistics is obtained
from a slice sampling method [23]. The procedure is applied to the two datasets.

Fix £ = 0.1 and p = 0.8 for the BF and PLR tests. Under the H; case, the BF and
PLR tests reject Hy: BF = 0.04 and PLR(x,0.1) = 0.94. In the Hy case, both tests accept
Hp: BF = 3.7 and PLR(x,0.1) = 0. More information is presented on Fig. 1.
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FIGURE 1. Left: Histograms of the {LR(x,0l/)} chains. The properties of Sec. 4.1 are displayed.
Right: Corresponding cumulative distributions: PLR(x, §). Left: Hy is rejected; right: Hy is accepted.
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